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Estimation of a Mass Unbalance Under the Crack
on the Rotating Shaft

Rai Wung Park

Abstract: The aim of this work is to present a new method of estimating the existence of a mass unbalance and mass unbalance under
a crack on a rotating shaft. This is an advanced new method for the detection of a mass unbalance and a new way to estimate the
position of it under crack influence. As the first step, the shaft is physically modelled with a finite element method and the dynamic
mathematical model is derived by using the Hamilton principle; thus, the system is represented by various subsystems. The equation
of motion of the shaft with a mass unbalance and a crack are established by adapting the local mass unbalance and the stiffness change.
This is a reference system for the given system. Based on a model for transient behavior induced from vabrations measured at the
bearings, an elementary Estimator is designed to detect mass unbalance on the shaft. Using the Estimator, a bank of the Estimator is
established to estimate the position of the mass unbalance and arranged at a certain location on the shaft. The informations for the given
system are the measurements of bearing displacements and velocity.

Keywords: dynamic behavior, mass unbalance, estimator, a bank of estimator, position of mass unbalance

I. Introduction

Very often, a mass unbalance results in a bearing damage
which is very dangerous in rotor system. This can lead to a
catastrophe. Actually, there have been many reports to these
disasters [1]-[3]. Especially, it happens with the generator in
the power station and with the loading pump in a chemical plant.
As an aspect to keep the stability of a system, to guarantee the
safety for the men and to save the running cost, it is very im-
portant to estimate the mass unbalances and mass unbalances
under a crack infulence on the shaft before meeting any demoli-
tion of the system. Here, a suitable step must be taken. But, up
to now, there has been not any work in this area. Only, some of
the classical methods for detecting a crack [4] and a new way to
detect crack and to estimate position of a crack on the rotating
shaft are mentioned [5]. Therefore, in this paper, a new method
for estimating the mass unbalances during the process of op-
eration and those under crack influence in running operation is
presented. As an indicator for the existence of them, the lin-
ear dynamics due to mass unbalance and the nonlinear dynamic
effects appeared by the change of the stiffness coefficients due
to the rotation of the cracked shaft are going to be investigated.
These effects related to the measurement on the bearing are one
of the important hints to determine the existence of the mass
unbalance on the rotating shaft. But it is not easy to set up the
clear relation between mass unbalance under the crack and the
caused phenomena in the time domain operation. This is the
main problem in the area of a mass unbalance too.

As the first step, the basic Estimator is established in the way
to modify the given system into the extended system with a fic-
titious model for the nonlinear system behavior. In this consid-
eration, the effects of the extended system which may be non-
linear are interpreted as internal or external disturbance which
is unknown at the initial stage.

The unknown linear and nonlinear effects are going to be ap-
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Fig. 1. Mechanical model of the rotor.

proximated by the additional time signals yielded by an ele-
mentary Estimator. Because of using the finite element model,
it is not necessary to calculate the relative compliance of the
crack. Normally, the elementary stiffness matrix for an undam-
aged rotor is given in the stage of the construction. The stiffness
corresponding to the crack can be calculated [6]-[8].

As an example of the physical model, the shaft is modelled
into N(=7) finite sub-shafts [51[9]. Each one is called a sub-
system. At both ends of the shaft there exist dynamics of the
bearings. For the initial data needed in the operating system,
the displacements of the jounals are measured up on the bear-
ings at the left and the right side of the shaft. It is assumed that
the mass unbalance and the crack have the same direction on
the radius of the shaft diameter [5][10]. The material proper-
ties are homogenous. The geometrical data and other detailed
information are given in the appendix.
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II. Mathematical Model

Assuming that there is only small deviation from motion and
non redundant coordinate [11][12], the system (Fig. 1) includes
3 harmonic unbalances in the 3rd, 4th and Sth subsystems in
the middie of the shaft. Then the following equation can be
accepted as linear system.

Mg §(t) + (Dag + Gyg) 4(t) + K,y q(t) =

1
Fo(8) + Ls() na(t) + Lu(j) mulg(),t),

Here, the index g denotes the whole system. Equation (1) is able
to be discretized into N(=7) sub - finite systems. Its equation of
motion with crack at a subsystem 4. is described by

ie=1,...,N @

. . : n
]k(le) = [(Ze - 1) —2- + 1] (ie=1,...,N) (3)
i = Jk7a]k +n-1 (4)
O ©

With 2., ji, i, and j the vector in explicit form and the equa-
tion of motion can be given as follows:

et D)@ im1,. 341y = Le—1(F+D) ©)

N jr(ie)+n-—1

2 X

te=1 jr=jk(ie)
+ Kegjy (i) (#)] = fo(D)(Ge)io=1,...m) )
+ Lu(nu, ie)[nu(g) (), Do =1,....N)
+ Ls(ng,ic)[nr(t)g.=1,..,v),

where, the index of e represents the elementary subsystem. The
elementary notations in the equations denote as follows:

[Medjy (i) (8) + (De 4+ Ge)gjp (i) (B)

« q(t), g(t), g(t): displacement vector, velocity vector, and
acceleration of the system

o My, K, : mass matrix, stiffness matrix of undamaged sec-
tion

e Dyy, Gg = —GgT: matrix of the damping and gyroscopic
matrix

o ge(t), ge(t), ge(t): displacement vector, velocity vector,
and acceleration of the elementary subsystems. q.(t) € R",
n(=8), and nn(=32) are degrees of freedom of the considered
elementary subsystem and total system. The g.(t) consists of
q.(t) = (z1, 91, 0z1,0415 Tryyr, zr,Oyr), the indices I and r
denote the left and the right node and z,, y,, 6z,, 8y, are the
coordinates at the subsystem

e fo(t), n{g(t),t) : vector of gravitation input vector, and vec-
tor of the nonlinearities caused by unexpected influence(crack)

e M., K. : elelmentary mass matrix, stiffness matrix of un-
damaged secton with respect to a subsystem 7.

e Dye, G = —G7 : matrix of the damping , gyroscopic
effects

 n(R)(t), m(y)(¢): nonlinear vector with regard to the crack
at subshaft number ¢, and linear vector acording to the mass
unbalance

All system matrices are constant in terms of time t and the
distribute matrix for the crack, and the mass unbalance [5][9] is

given in the following way:

ie-th position

00 , e 000
00

Ls(j) = ®)

ie.th position

~

(2xXN)

000 ..., 1100 ., 000 17
1100 .

ie.th position

Lu(y) = ®)

From now on, the index j will be left out with respect to the
whole dynamic system. It is normally convenient for further
operation to write the above equation via state space notation
with z(t) = [¢(£)7, ¢(t)7] including the nonlinearities of the
motion created by a crack.

z(t) = Az(t)+ Bu(t) + Nenr(t)
+  Nyng(z(t),t). (10)

The equation of the measurement is given by
y=Cz(t), an

where, A is (N, x N, ) dimensional system matrix which is re-
sponsible for the system dynamic with IV,, = 2nn, u(t) denotes
r -dimensional vector of the excitation inputs due to gravita-
tion and unbalances. B is (N, X r) dimensional input matrix.
The matrix C presents (m. x N,,)-dimensional measurement
matrix. x(t) is N, -dimensional state vector, and y(t) is me
-dimensional vector of measurements, respectively. Here, the
vector ng(t) and n.(z(t),t) characterize the ny -dimensional
vector of nonlinear functions due to the mass unbalance and the
crack, respectively. N, and N are the input matrices of the lin-
ear and the nonlinearties, and the order of N is of (Nn X ny).
It is presupposed that the matrices A, B, C, Nr , the vector u(t),
and y(t) are already known. Now it remains to reconstruct the
unknown linear vector n,, (z(t),t) and nonlinear vector ng(t)
which mention the disturbance force caused by a mass unbal-
ance and crack. The basic idea is to get the signals from ng(t)
and n, (x(t), t) approximated by the fictitious model [14]

nr(t) = Hin (12)
n(t) = Vin(t) (13)
n.(z(t),t) = Have (14)
vy = Vaua(t) 15)

H = 1, (16)
Hy, = [10] (17

Vi = 0 (18)

0 1
o= e o (19

that describes the time behaviour of the nonlinearities due to
the appearance of the crack approximately as follows:

ngr (t) ~ T7gr (t)
= Hit (t) 20)

i (£(t))
= Haba(t) 21

Q

nu(z(t),t)
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At first, the given system (10) has to be extended with the
fictitious model(12, 13, 16, 15, 18, 17) into the extended model

z(t) [ A NrH: N.H» z(t)
01(¢) = 0 Wi 0 v1(t)
v2(t) | 0 0 v2 Va(t)
e — ~ ~ I N —
Ze (t) Ae ze(t)
[ I
+ 0 |a) 22)
| 0
z(t)
yt)=[C 0 0]| wi(®) |, (23)
—(7:——/ ’U2(t)

here, N, H2 and Ng H; couple the fictitious model (12, 16, 18)
to the whole system. To enable the successful estimation it is
obligatory to pay attention to the condition me > ny. ie,
the number of the measurements must be at least equal to or
greater than the modelled nonlinearities. In the case the above
requirements are satisfied, the elementary Estimator (Fig. 2) in
terms of an identity observer [5] can be designed.

- Elementary Estimator -

u(f) measurement 5
X(t)= Ax(®)+ Bu()+
N (6)+ N n, (x(1),1)

Fictitious model

()= Hypy(8), 1 (&) =V n (D)
n, (xfe)8) = 2,y (8,5, (0) =V ()

; 3(%
Estimator n(?)
(Disturbance Observer)

1

Fig. 2. Elementary estimator.

The Fig.2 shows the procedure of the establishment of an el-
ementary Estimator which has the same input signal as a plant.
It consists of plant, fictitious model and input signal. The ma-
trices Hi, Hs, V1, and V> have to be chosen according to the
technical background considered in terms of oscillator model
for mass unbalance and integrator model for crack [16][18]. In
this way, the additional forces created by mass unbalance and
by crack are going to be reconstructed through the estimation of
the disturbance vector v1 (¢) and v2(¢). To make signals v1(t)
and vz (t) available, it is necessary to design the elementary Es-

timator.
Zi(t) [ A—-L, C NgpH, N,H
t(t) | = —L, C Vi 0
62(0) | | —LneC 0 Vs
Ao (24)

Zi(t) i
[ 1 (t) +
o ] L

O O M~

L,
} a(t) + [ L ] y(t)
Lv2

For the Estimator, the requirement

" My, — A —NpHi —N.H»
O AIsl - Vl O

Rank 0 0 AL — Vs
c 0 0

= dim(z(t)) + dim(v1(t)) + dim(va(t}))
=N,+n;4+2n; YA€CT,
and the requirement of the controlability

Rank[ My, —A B ] =Ny, (26)

must be satisfied. The output equation for the measurement is
presented as follow:

(t)
gty=[C 0 0] | %u(®) |- @7
N ﬁz(t)

Ce

Where matrices L, L, and L, are the gain matrix of the
observer. The above equation (24, 27) means that the observer
consists of a simulated model with a correction feedback of the
estimation error between real and simulated measurements. The
matrix A, has (N, +ny x Ny + ny) -dimensions and repre-
sents the dynamic behaviour of the elementary observer. The
asymptotic stability of the elementary observer can be guaran-
teed by a suitable design of the gain matrices Ly and L, which
are possible under the conditions of detectability or observabilty
of the extended system (22, 23). To achieve the successfull esti-
mation under the asymptotic stability, and to make the dynamic
of the observer faster than the dynamic of the system, the eigen-
value of the considerd Estimator (A, ) must be settled on the left
side of the eigenvalue of the given system (A.). The fictitious
model of the behaviours of the mass unbalance is able to be de-
signed using oscillator model [13]. The observer gain matrices
L., Ly and Lyzcan be calculated by pole assignment or by the
Riccati equation [17][18] as follows:

A+P+PAT_PC'R!CP+Q=0
L,
L. | =PC"R;. (29)
Lv2
The weighting matrix Q and R,,, have to be suitably chosen
by the trial and errors.

III. Design of an estimator for the mass unbalance

In the above section it has been studied how to design the el-
ementary Estimator for the detection at a given local position.
It means that a certain place on the shaft is initially given as
the position of a mass unballance. In the real running opera-
tion there is not any information about the position of the mass
unbalance, so the elementary Estimator has to survey not only
the assigned local position but also any other place on the shaft.
It also give the signals whether a mass unballance exists or not.
As it has been known, it is possible to detect the mass unbalance
assigned certain place on the shaft. In the case a mass unbalance
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appears at any subsystem in running time, it must be detected as
well. But in many cases it has been shown that it is impossible
or very difficult to estimate the position of the mass unbalance
at all subsystems on the shaft with one Estimator. Generally,
it depends on the number of the subsystem and the number of
Estimator. For the estimation of a position of mass unbalance, a
Estimator bank based on an elementary Estimator is designed.
The main idea is to reconstruct the related forces of a mass un-
balance from certain local position to the arranged elementary
Estimator. This is the main task in this section.

The structure of the Estimator considered is presented in the
work [51[9]. It consists of a few elementary Estimators. The
number of elementary Estimator depends on the number of the
subsystems modelled. Every elementary Estimator which is dis-
tinguished from the distribution vector Ls(;,) gets the same in-
put(excitation) u(t) and the feedback of the measurements, and
is going to be set up at a suitable place on the given system. For
the appropriate arrangement of the elementary Estimator, the
distribution matrix on the analogy of (9) has been applied. In
this way the Estimator bank is established with the Estimator.
To estimate the local place of the mass unbalance, there are two
steps. First of all, the Estimator must be observable in the mean-
ing of the asymptotical stability in the system. The requirement
has been satisfied by the criteria from Hautus [14][16] (25).
This means that the Estimator has to be capable of estimating
the mass unbalance at any location, where Estimator is situated
on the given system.

To guarantee this, the requirement (25) is supposed to be ful-
filled. In this work three Estimators are arranged at the 2nd, 4th
subsystems and the 6th like this:

ieth.position T
Ls(ie) =
S( e) 00 ..., 1100 yeers 0 (ie=2,4,6)

(30)

The unknown position of a mass unbalance is found by the

Estimator according to the related forces of the mass unbalance

resulting from the mass unbalance in some other location on the
shaft. The Estimator bank can be presented as follow:

[ Zi(t) T [ A—L,,C NrH;i N,H:
D1, (¢) = —L,; C i 0
Lo ] L L 0 W
Ao
[ Z:(t) ] I Ly,
0y, (t) + 0 | @(t)+ | L, y(t) (3D
Lo ] Lo Lus,
e = 2, 4, 6
0
Nep=| ————— (32)
M~'Ls(i.)
0
Ny=| —-———— . 33)
M~ Lu(i.)
Each elementary observer for the subsystems i. = 2,4,6

yields estimates

7 mazi {17, @) = |1 Hi11,: ()11}
fe=1,.,N+1 (34)

U mazi, {1|7ow,i. (01| = | H202,6. ()]}
te=1,.., N+1, 35)

Looking for the maximum values
imae = AT, yt{ﬁuvie (t)} (36)

The corresponding index 7. approximately defines the sub-
system where the crack occured.

IV. Examples
The Estimator bank consists of three elementary Estimator.
The first Estimator A is situated at the 2nd subsystem, the 2nd
Estimator B is at the 6th subsystem and the 3rd Estimator C is
placed at the 4th subsystem. The criteria to detect a mass unbal-
ance are the magnitude of the forces. In order to localize a mass
unbalance position, it is necessary to choose the maximal mag-
nitude of the force from all Estimator by the comparison among
the forces turn out. In the case, the Estimator shows none of
the force, there is not any mass unbalance in this system con-
sidered. If any one of the Estimator gives the signal of a force
the system has a mass unbalance in a corresponding position.
As the 1st example, the given mass unbalance is at the 1st and

4th of the node in the system considered.

force [N]

time [s] (a)

__force of mass unbalabce, rppm= 157 rad/s = _

force [N]

time [s] (b)

Fig. 3. Estimator A: Mass unbalance in the 1st and 4th Subsys-
tem, Y coordinate: force in N, X coordinate: time in sec.

The Fig. from 3 shows that the Estimator detects a mass un-
balance at the 1st node. The first courve with "+’ presents the
simulated force due to the equation of the harmonic mass un-
balance (see appendix). The force of a mass unbalance depends
on the mass of the excentricity m.5, excentricity ex, velocity
of the angle Q, angle of the phase 3 and time ¢. The 2nd courve
with ’-’ is the estimated force come from the Estimator bank.
The Fig. a and Fig. b from 3 tell the force of mass unbalance
with rppm(=150) and rpm(107.5), respectively. By the compari-
son of the forces, there are some differences between estimated
force and simulated force. For example, the magnitude of the
force and shape of vabration. The reason for the difference can
not be defined. The main task of the work is to detect the force
of the mass unbalance and to estimate the position of the mass
unbalance in terms of forces. The establishment of the relation-
ship between the magnitude and caused bearing damage is not
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considered in this papaer. However, the Estimator bank can
estimate the force of the mass unnbalance on the shaft.

5 x10-3 Estimator A, mass unbalance in the Ist node
4l
z 3
8
L
1/\
0 .
0 0.5 1 15
time [s] ()
5 x10-3 Estimator A, mass unbalance in the 4th node
[ e —————
4 j
z 3f . ]
8
& 7 1
i /(—\/L\ /I/\
0 ) .
L5 2 25 3 35 4 45 5

0 0.5 1
time [s] (i)

Fig. 4. Estimator A: Mass unbalance in the 1st and 4th Subsys-
tem, Y coordinate: force in N, X coordinate: time in sec.

The results in the Fig. 4 describe the forces of mass unbal-
ance in the 1st node under the influence of a crack. The crack
has been appeared at 3 [s] later after runtime operation. Up to
3[sec], the forces of the mass unbalance and crack have been
overlapped. This denotes that the mass unbalance and crack ex-
ist in the same place(node) on the shaft. It has been already
mentioned that the breathing derection of a crack and the posi-
tion of the mass unbalance on the radius of the diameter of shaft
are on the same line. By the comparison of the forces in a and b
in Fig. 4, the elementary Estimator A sees the lagest magnitude
of force. It means that the mass unbalance exists closer or near
to the 1st of the node than to the 4th of the node.

5 x10-3 Estimator A, mass unbalance in the 6th node

44 4

3 J

2t ]

1F

T B RV Ry

timne [s] (a)

5 3(10'3 Estimator B, mass unbalance in the 2nd node

4 ]

3 J

2 J

1+ J

Oi N £ mee: e SV S wooemsatizas VO Y a——
0 0.5 1 1.5 2 2.5 3 35 4 45 5

time [s] (b)

Fig. 5. Estimator A and B: Mass unbalance in the 6th and 2nd
Subsystem, respectivele, Y coordinate: force in N, X co-
ordinate: time in sec.

The Fig. 5 (a) shows the estimated forces by the Estimator A
according to the mass unbalance on the 6th subsystem The ele-
mentary Estimator A is hardly to know the existence of a mass
unbalance and it is very difficult to differentiate the force of the

force [N]

force [N]
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mass unbalance and the effects of any other noise by measure-
ment or system. The Fig.5 (b) illustrates also the force from
the Estimator B concerning mass unbalance on the 6th subsys-
tem The magnitude of the force by the Estimator A is almost
the same as by the Estimator B. This says that the Estimator A
almost can not estimate the mass unbalance at the 6th node and
Estimator B can not detects the mass unbalance at the 2nd node.

5 x1073 Estimator C, mass unbalance in the 4th node

4+ J
Z 3 3
8
g 7 1

1t 4

0 . .

0 0.5 1 L5 2 25 3 35 4 4.5 5
time [s] (a)

5 Xl 103 Estimator C, mass unbalance in the 1st node

4 )
z 3 .
g
& 2r ]

1F ]

0 \ . .

1 [ 2 25 3 35 4 45

0 0.5 5

time [s] (b)

Fig. 6. Estimator C: Mass unbalance in the 4th and 6th Subsys-
tem, Y coordinate: force in N, X coordinate: time in sec.

The Estimator C shows the existence of a mass unbalance at
the 4th and 1st node. But by the comparison of the magnitude
of forces between Fig. 6 (a) and Fig. 6(b) the force by the Esti-
mator C is greater than by 1st node C. This telles that the mass
unbalance situates in the 4th node.

x10-3 Estimator B, mass unbalance in the 6th node
e

A

2.5 3 4.5

time [s] (a)

5 x10-3 Estimator B, mass unbalance in the 4th pode
41+ 4
3+ i
2F 4
1+ /f\/\/\ Jr\/\/\ /}/\
0 : . f . ) , f

0 05 1 L5 2 25 3 35 4 4.5 5

time [s] (b}
Fig. 7. Estimator B: Mass unbalance in the 4th Subsystem, Y

coordinate: force in N, X coordinate: time in sec.

The results in the Fig. from 7 denote the forces of mass un-
balance in the 4th node. The Fig. (a) illustrates the lageer mag-
nitude of the force anyother node. It tells that the mass unbal-
ance is placed at the 6th node. Like the examples, the Estimator
gives the information where a mass unbalance exists.

In this way the Estimator estimates the existence of a mass



Transactions on Control, Automation and Systems Engineering Vol. 2, No. 4, December, 2000 233

unbalance under the crack influence of crack and none crack on
the shaft, and localize its position according to the magnitude of
force of mass unbalance. These forces related from certain posi-
tion of a mass unbalance under crack to Estimator A, Estimator
B and Estimator C are supposed to be interpreted as mechanical
forces due to the harmonic balance from oscillator model [15].
The numerical value of the p, concerned with the weighting
matrix Q is in the appendex. The factor p, of the weighting ma-
trix Ry, is of 0.45 and diagRy; ;) is of 1. The matrices Q and
R,, have been chosen by the trial and errors. It has been no-
ticed that the Estimator estimates the signals very well. If only
the mass unbalance is situated at the position where the Estima-
tor are located. Otherwise the position of the estimator plays a
part in the values of the forces regarding to the excited inputs
as well. However, the forces od the mass unbalance are a clear
indicator for the existence of a mass unbalance in the shaft. The
other figures which have been left out because of quantity of
this paper, show that Estimator B which is arranged at the right
bearing, is not able to estimate the crack in the 1st of the node
in the system. The given magnitude of the mass unbalace e, is
in the appendix.

V. Summary and conclusions

Using FEM the mathematical model of the rotating shaft in-
cluding a crack has been presented. Based on the mathematical
model, the elementary Estimator and an Estimator bank have
been developed. With this Estimator the task of the detection of
a mass unbalance and localization have been done. The above
methods give a clear relation between the shaft with the mass
unbalance and the caused phenomena in vibration by means of
the measurement at both bearings. Theoretical results have been
given. The forces in the results are the internal forces, which
have been reconstructed as disturbance forces created by the
mass unbalance.

From the given Example, it has been theoretically shown, that
the mass unbalances on the shaft can be detected. The Estimator
is able to estimate the location of a mass unbalance. The method
considered can be applicated in the similar area of the problem
with the linear and nonlinear dynamic effect from a mass un-
balance by the suitable design of an Estimator. Anyway, the
suggested methods are very significant not only for the further
theoretical research and development but also for the transfer
in experiments. Furthermore, one of the important thing to be
mentioned is the noise problem. Actually, because noise gives
the distortion of the result very often. The another thing is the
physical modelling of the given system. So, the noise effects
and the modelling of system have to be researched in the future.
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Appendix
Using the abbreviation ¢4 = i ~ j, +1,jj = 7 — jx + 1, the
sum of the matrices, with accordance to equations (2) and (3),
can be described as follows.

N [Ge=1) B4+1 j4n—1

Mgy GiwGe) =D 1 D (D M(is,55))

ie=1| k=1 i=ik o)

+M(Odime xdime) (A 1)

N [Ge=1) 241 ji4n—1

Ko Goaw(e) =D | > (D Kelii,jf)

ie=1| dk=1  ig=i o)
- e

+K timex dime) (A2)

N [Ge—=1) 2+1 j4n-1

Gy Gramlie) =31 D (D Gelii, i)

te=1] =1 LI=jk 1o
0
+G(dimexdime) (A 3)

-

N [Ge=1) 241 jp4n—1

Dgy GoiiyGe) =D 1 D (Y Deldi, i5)

ie=11 Jr=1 4Li=Jk 1o

+D?dimexdime). (A 4)
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The matrices used in equation(10) are follows
A=

0 : Iinn)
(A5)
_(My)-lKe _(My)_l(Ddg +G9)

(64x64)

The index i denotes the number of the subsystem. The vector
of the order of the excitation and the matrix of nonlinearites,

0
a(t) = (A 6)
-1
M9 fe (64x1)
0
NC(LS(i)) = (A 7)
-1
—Mg" Lsgsy 1 gyuyy,
isof (64 x 1).

Where the vector of the excitation consists of graviation and
harmonic unbalance , is presented by

fe = flg,icii=1,..N) + fluio=3,4,5)
f(!];?) = f(9?30) =0 (A8)
» flgie) = fgi0) = fgne =
fiei18) = fg22) = figi26) = —mg,
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The order of the f, is of (32 x 1) and f, is of (32 x 1).

f(u;l?) = f(u;21) = f(u;25) =
—em Q% m(eq) in(QU + B)
f(u;ls) = f(u;zz) = f(u;ZG) =
Em 02 M(ez) COS(Qt + ﬂ),

(A9)

where angle of the phase: 8 =0, length of the subsystem of
rotor el = 2m, Diameter of the subsystem of rotor makes
ed = 0.25m. The mass of elemental subsystem: m =
w el pETDz, The density is of p = 78605%, excentricity:
em= 0.0001, mass of the excentricity: m.,)= 3 m respec-
tively. The modulus E 4y is of 2.1 * 10° N/mm?. The stiff-
ness of bearing: Kpeaing = 15 * 10° N/mm?. The measure-
ment matrix of order(4 x 64), C;—1,...4,j=1,...64) = 0, €X-
cept Cax1y = Caxay = Craoxae)y = Caoxso) = 1. The
number of the nonlinearities ny are of 1 and the number of the
measurements m. makes 4. The elementary matrices K., M.
and D, which depend on the geometry, are given in [6, 7, 8].
The weighting matrix Qq2(i = 1.,,,.66,5 = 1.,,,.66) and
Qu(i=1.,,,.66,5=1.,,,.66) is of:

( Q(i,j) =2.6010% i=5j=1,..8
QG,j)=2110% i=35=9,..,16
Q(i,§) =57e10% i =35 =17,..,24
Q(i,j) =3.4010% i =j =25,...,32
QG,j)=15010°, ¢ =5=233,...,45
Qi,j) =2510%, i =j =46,...,52
Qi,7) =1210% i =j =53,...,64

L Q(i,7) =1.5107; i = j =65, ..., 66.

(A 10)




