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SYMMETRIC DUALITY FOR NONLINEAR
MIXED INTEGER PROGRAMS
WITH A SQUARE ROOT TERM

Do Sane KiM AND Young RAN SonG

ABsTRACT. We formulate a pair of symmetric dual mixed integer
programs with a square root term and establish the weak, strong
and converse duality theorems under suitable invexity conditions.
Moreover, the self duality theorem for our pair is obtained by as-
suming the kernel function to be skew symmetric.

1. Introduction

The study of symmetric duality in nonlinear programs was initiated
by Dantzig et al. [3]. Balas [1] considered the symmetric duality resulis
of Dantzig et al. [3] for the case that some primal and dual variables
were constrained to belong to some arbitrary set; for example, the
set of integers. While Balas [1] used concave /convex functions and
nonnegative orthants as the cone, Mishra and Das [9] generalized this
to any arbitrary cone. And then Kim et al.[5] established the symmetric
duality theorems for multiobjective nonlinear programs with arbitrary
cones. The duality results ‘of Balas [1] of the problems with convex
cone domains and the pseudo-convex /pseudo-concave kernel function
were extended by Mishra et al.[8]. Recently Kumar et al. [6] presented
a modified pair of symmetric dual minimax integer programs which
was in the spirit of Mond and Weir [11,12] and did not require any of
several assumptions of the type given by Mishra et al. [8].

On the other hand, Mond et al.[7,10] gave symmetric duality theo-
rems for certain nondifferentiable programs with square roots of qua-
dratic forms in the objective functions. Since then Chandra and Husain
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[2] gave symmetric and self duality theorems for nondifferentiable pro-
grams with the convexity/concavity conditions of kernel function. The
following pair of programs was considered by Chandra and Husain [2}:

(P) Min  Fz,y,0) = f(z.9) - y"Vyf(z,) + (=7 Ba)*
subject to - Vyflx,y)+ Cw 20,
wlCw £ 1,
20, y20,
(D) Max  G(u,v,2) = flu,v) —u! Vof(u,v) — wTCv)}
subject to — Ve, fu,v) — Bz £ 0,
2TBz £1,
w20, v20.

In this paper, we formulate a pair of symmetric dual mixed integer
programs with a square root term and establish the weak, strong and
converse duality theorems under the condition that f(z,y) + z.TBz
is invex in z for each (z1,y) and —f(z,y) + 27 Cw is invex in yo
for each (x,41), where (z,y) = (z1, 2, ¥1, y2). Moreover, the self du-
ality theorem for our pair is obtained by assuming f(x,y) to be skew
symmetric.

2. Preliminaries and notations

We constrain some of the components of x and y to arbitrary sets
of integers. Suppose the first n; components of x and the first m;
components of y (0 € ny < n,0 < m,; < m) are arbitrarily constrained
to be integers and the following notations are introduced:

(Sﬂ,y) = (35'1,9321?}1:?}2) € R™ x Rmyxl € Rnlandyl € le,

where n = n; +ng, m = m; +mo. Let U and V be two arbitrary sets
of integers in R™ and R™, respectively. Let f : R® x R™ — R be
a twice differentiable function. Let V., f(z,y) denote the gradient of
f(z,y) with respect to x5 and V,, f(z,y) be defined similarly. Also let
V2232 f (%, y) denote the Hessian matrix of f(z,y) with respect to zs.
Vi (2, 9), Voo, f(z,y) and Vi,y, f(z, y) are defined similarly.
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DerFINITION 1 [2]. A differentiable function F': R™ — R is said to
be invex with respect to the n : R®xR™ — R” if for all (z,u) € K" xR",

F(z) — F(u) 2 n(z,w)TVF(u).

DEFINITION 2. Let (S1,S2, -+ ,S,) be elements of an arbitrary
vector space. A real valued function G(Si,S2,---,5p) is said to be

separable with respect to Sy if there exist real valued functions H(51)
and K(S2,Ss3,---,Sp) such that

G(51,8s,-++,Sp) = H(S1) + K(S52,53,-++,5p).
We shall make use of the following generalized Schwarz inequality:
a” Ay < (a7 Aa)¥ (y" Ay)2.

where z,y € R? and A € R"*" is symmetric and positive semidefinite.
Now we consider the following minimization problem with a square
root term:

(P) minimize  f(z) + (zT Bz)?

subject to  g(z) = 0,
where f: R® — R, g: R" — R™ and B is symmetric positive semidef-
inite n X n matrix.

In order to obtain the symmetric duality results, we introduce Fritz
John type necessary optimality theorem for (P).

LEMMA 1[4]. If T is optimal to (P), then there exist r € R,p € R™
and z € R™ such that
pT9(T) =0,
r(Vf(Z) + Bz) = VpT 9(F),
2TBz £ 1,
(zT Bz)% =77 Bz,
(rp) 20,
(r,p) # 0.
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We formulate the following symmetric dual mixed integer problems

with a square root term:
Primal {SP)

Maxy, Ming,, F(z,y,w) = f(z,y) -1 Vy, f(z,y) + (25 Bxs)*
{1) subjectto -V, fl(z,y)+Cw =0,
(2) wiCw £ 1,

€U, eV,

Dual (SD)

Minyl Max$,92 G(uv v, z) = f(u’ U) - ugv:r:z f(u> U) - (Ugcv2)%
{3) subject to ~ Vi, flu,v) — Bz £ 0,
(4) 2TBz <1,

ug €U, vy eV,

where (i) B € R™*™ and C € R™2*™2 are symmetric positive semi-
definite, (ii} 2 and w are vectors in R™ and R™2 respectively, (ili)
f :R* x R™ — R is twice differentiable in xs and yo and separa-
ble with respect to z1( or %) and (iv) m{zg,us) + us 2 0 and
n2(v2,y2) + y2 2 0.

For notational convenience, the sets of feasible solutions of primal
X and dual Y are denoted by

X ={{z,y,w)lz1 € U,y1 € V,~Vy, f(z,y) + Cw Z 0,w’ Cw £ 1},
Y ={(v,v,2)|lu1 € U,v1 € V,~Va, f(u,v) — Bz £ 0,2"Bz £ 1}.

3. Symmetric duality

In this section, we establish weak, strong, converse and self duality
theorems between (SP) and (SD)).

THEOREM 1 (Weak Duality). Let f(z,y) + 21 Bz be invex in x5
for every (x1,y) with respect tom and — f(z,y) + ya Cw be invex in
y2 for every (x,y1) with respect to no. Then, for any (z,y,w) € X and
(u,v,2) €Y,

F(z,y,w) 2 G(u,v, 2).
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Proof. Denote
Z = maxmin {F(z,y, w)|(z,y,w) € X}, and

Ty Iy
W = minmax {G{u, v, z)|(u,v,z) € Y}.
1 I,Yy2

We give the proof only for the case f(z,y) is separable with respect to
z1. (The case f(z,y) is separable with respect to y; can be handled in
a similar way.) Since f(z,y) is separable with respect to z, it follows

that f(z,y) = fi(21) + f2(22,y). Therefore Vy, f(z,y) = Vy, f2(z2,y)
and Z can be written as

2= n}:z}xgii’ﬂ{fl(ml) + fo(22,9) ~ Y3 Vo, fo(a,y) + (21 Bza)| 2, € U,
Y€V, -V, f(z,y) +Cw 20, wlCw < 1}.
or Z = max,, ming {fi(z1) + #(y1) : 21 € U, y1 € V}, where
(B) o) = min{fp(x2,y) — Y3 Voo fo(22,y) + (2] Baa)?
| = Vo fol@2,) + Cw 2 0, wTCw £ 1}
Similarly, W = miny, maxg, [fi{u1) +¢¥(v1) : v1 € U v, € V], where
(6)  $(v1) = max{fo(ua,v) = 45V, fo(u2,v) - (o] Cun)?
| = Vip foluz,v) — B2 £0, 2Bz £ 1}

Let (z,y,w) € X and (u,v,2) € Y. In order to prove the theorem, it
is sufficient to show that ¢(y1) 2 ¥(v;).

d(y1) — ¥(v1)

2 fo(e2,9) - ¥ Vs fo(@2,y) + (2] Bzs) ¥
— fa(uz,v) +ud Vo, fo(ua, v) + (v] Cuy)?

2 fa(22,9) = 93 Vou fo(w2,9) + (2] Bra) (27 B2)?
— folus,v) +ul Vu, folug, v) + (v Cuva} 3 (wF Cw)?
(by (4), (2) and (3))

2 fo(@2,y) ~ y3 Vy, fo(22,y) + 23 Bz — folug,v) + ud Vo, fa(ug, v)
+vd Cw (by the generalized Schwarz inequality)
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2 m(z2,u2)T (Vay fa(ua, v) + Bz) — ma(v2,12) " (Vy, fala2,y) — Cw)
+ ygcw + ung - ygvyz f2(352,’y) + ugvxz f2(u2: 'U)
(by the invexity of f(z,y) + z2T Bz, and — flz,y) + szC'UJ)

= {m(z2, u2) + u2}T (Va, folug, v) + Bz)
— {m2(v2, 12) + 12} (V. falT2, ) — Cw)

20
(by (1), (3) and (iv)).

Therefore F(z,y,w) 2 G{u,v, z). 0

Using the Lemma 1, we can prove the following strong duality the-
orem.

THEOREM 2 (Strong Duality). If (Z, ¥, @) € X solves (SP) and
the matrix V., f2(F2, ¥) is positive or negative definite, then there
exists 7 € R™ such that (T, ¥, z) € Y with F(Z,9,%) = G(%,9,%2). If,
in addition, f{(z,y)+azi Bz be invex in x5 for every (zy,y) with respect
tom and — f(z,y)+y4 Cw be invex in y» for every (zx,y1) with respect
to ne, then (Z,9,Z) is optimal for (SD) and objective value of the dual
is equal to that of the primal.

F(z,7,®) = G(T,7,%).

Proof. For given y; = v1 = 7, (5) and (6) are a pair of symmet-
ric dual nondifferentiable programs. Since (Z, 7, @) solves (SP), by
Lemma 1 there exist r € R, o € R™2 and § € R such that

(7) aVy, f2(%2,7) = o' C,
(8) B(1—w" Cw) =0,
(9) Vo, f2(T2,U) + (0 ~ 5)  Vayy, fo(T2,7) + rBZ = 0,
{10) (o - T@z)Tvyzyzfz(Ezaﬂ) =0,
(11) Ca = 26CT,
(12) ' Bz £ 1,
(13) (73 BT2)® =73 B,
(14) (r, e, 8) 20,

(15) (r,a,8) #0.
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Now multiplying (10) by (@ — 7y,), we have
(o — T§2)Tvyzyzf2(52a§)(a ~7Yy) = 0.
Since Vy,y, f2(Z2,¥) is positive or negative definite, we obtain
(16} a =77P,.
Now multiplying (11) by w7, we get
(17) w! Ca = 20w CW.

It is to be observed here that r > 0, for otherwise & = r%, = 0, and (17)
together with (8) imply 8 = 0, a contradiction to (15). Now equation
(11) with the aid of (16) and the fact r > 0, gives

(18) 75 Cw = (33 Cp) @ Cw)3.

Also from (8), either § = 0, and hence Cf, = 2(8/r)Cw = 0 or
W Cw = 1. In either case (18) give

(19) ¥ CW = (73CF)%.
From (9) and (16) together with r > 0 we get
(20) —Vz, f2(T2,7) - Bz =0,
and from (12) and (20), (Z2,7,%) is feasible for (SD). Multiplying (20)
by T», we get
(21) —T3 Va, f2(%2,7) = 75 Bz,
Hence
F(z2,5,W) =f1(Z1) + f2(Z2,9) — U3 Vo F2(Z.7) + (7] BT2)*
=f(Z1) + f2(%2,7) — 33 Cw + (2] BZ)
(using (7), (16) with r > 0 and then (13}))
=1(z,9) ~ 73 V2, /(2,7) - (7 CFa)?
(using (19), (20), f = f1 + fo,and YV, f = V., fa)
=G(T,7,z).
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Thus (T,7,z) is optimal for (SD) by Theorem 1. [
A converse duality theorem may be stated as follows:

THEOREM 3 (Converse Duality). If (Z, ¥, Z) € Y solves (SD) and
the matrix V,z, f2(ZT2, §) is positive or negative definite, then there
exists W € R™ such that (T, §, w) € X with F(z,7,w) = G(Z,7,Z).
If, in addition, f(x,y) + z1 Bz be invex in z, for every (z1,y) with
respect ton and —f(z,y) +y3 Cw be invex in y, for every (z,y1) with
respect to 12, then (T,%,w) Is optimal for (SP) and the objective value
of the primal is equal to that of the dual

G(z,9,%) = F(Z,7,D).

We now establish the self duality of (SP).

Assume that ny = mq, ng = mg, C = B, z = w and f(x,y) =

_f(ya :17)
It follows that (SD) may be rewritten as follows:

(SD') Max,, Ming,, f(v,u)—ulV,,flv,u)+ (ngvz)%
subject to — V. flv,u) + Bz 20,
2TBz<1,
Uy € U, vy € V.

(SD') is formally identical to (SP); that is, the objective and con-
straint functions of (SP) and (SD') are identical. This problem is said
to be self dual.

It is easily seen that whenever (z,y,z) is feasible for (SF), then
(v, z, ) is feasible for {(SD), and vice versa.

THEOREM 4 (Self Duality). Assume that (SP) is self dual and that
the invexity conditions of Theorem 1 are satisfied. If (T,7,z) is an
optimal solution for (SP), and the matrix V,,,, f2(T2, §) is positive
or negative definite, then (¥, %,Z)is an optimal solution for both (SP)
and (SD), and the common optimal value is 0.

Proof. By Theorem 2, (Z,7,%) is an optimal solution for (SD), and
the optimal values of (S P) and (SD) are equal to F(Z,%,%). From the



