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ON SCATTERING BY SEVERAL CONVEX BODIES

MITSURU IKAWA

ABSTRACT. We consider a zeta function of the classical dynamics
in the exterior of several convex bodies. The main result is that
the poles of the zeta function cannot converge to the line of abso-
lute convergence if the abscissa of absolute convergence of the zeta
function is positive.

1. Introduction

Let O; ( =1,2,...,J) be open and bounded sets in R? with smooth
boundary I'; = 80;. We call each O; a body, and assume that the
number J of bodies is greater than or equal to 3, and also assume about
the configuration of bodies the following:

(H.1) Each O; is strictly convex, that is, the Gaussian curvature of T
does not vanish.

(H.2) For any {j1, 2,43} € {1,2,...,J} satisfying j # je if £ #£ £, it
holds that

(convex hull of O, and O;,) N O, = 0.
We set
O=U_0; Q=R\0O, T=00=U/_T;

We consider two mechanics in £2. The one is the classical mechanics
and the other one is the quantum mechanics.

Here, the classical mechanics means the movement of a particle in Q2
following the law of geometric optics, and the object of consideration in
the classical mechanics is a zeta function ({u). It is known that, under
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the assumptions {H.1) and (H.2), a zeta funtion of Q can be defined as
follows:

(L.1) Cy =TT (1 = (1 (adga) e
where the product is taken over all the primitive, oriented periodic rays
in £ and the notations in (1.1) are as follows:

~v: oriented periodic ray in 2,

iy : the number of the reflection points of v,

d,: the length of v,

A, ¢ 'the eigenvalue less than 1 of the Poincaré map of v.

Let po be the abscissa of the absolute convergence of {(u), that is, g is
the real number such that

for Ry > py Z| AaAy2) P e < oo,

for Ru < py Z| Ay1Ay, )1/2 '”d"f|—

We can see immediately the existence of such pg from the form of each
term under the summation. So we have that

¢(p) is holomorphic in i > py.

Of course, there is a possibility of the analytic continuation of {{u)
beyond the line Ry = pyg.

On the other hand, the quantum mechanics in {2 means the propaga-
tion phenomena governed by the wave equation with Dirichlet boundary
condition, that is,

Fu .
(1.2) ﬁ—ﬁu-o in xR,
u(z,t) =0 on I'x R.

The object we consider for this problem is the scattering matrix §(z).
The scattering matrix S(z) is an £(L*(5?%))-valued function of z € C
which is holomorphic in the lower half plane {z; Sz < 0} and meromor-
phic in the whole complex plane C. Here, the notation £(H) denotes
the set of all linear bounded operators in the space H.

The problem which we would like to consider is on relationships be-
tween the singularities of {(1) and 8(z). But it should be remarked that
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actually it is difficult to show in general even the existence of a singular-
ity of {(¢). On the other hand, it is known that, if {{¢) has a singularity,
there exists an & > 0 such that a slab domain {z € C; 0 < $z < a}
contains an infinite number of the poles of §(z). This fact is nothing
but the validity of the modified Lax-Phillips conjecture for this obstacle
(Ikawal[4]).

In this paper, we shall do an opposite consideration. Qur main result
is the following theorem:

THECREM 1.1. Assume that the abscissa of absolute convergence of
C(u) is positive. Then, the poles of ({i1) cannot converge to the line

Ry = pg.-

The fact that we would like to emphasize here is that the statement
of Theorem 1.1 is purely of the classical mechanics in 2, but the proof
we shall do is based on the analysis of solutions of the reduced wave
equation and on the informations of the scattering matrix S(z).

2. Classical mechanics and symbolic dynamics

In this section, we shall explain that, the consideration of periodic
rays in §2 can be reduced to the consideration of a symbolic dynamics. A
symbolic dynamics is a pair of a set £, of infinite sequences of numbers
{1,2,...,J} and a shift operator g4 that translates sequences to left
direction of one step, whose definitions will be given before long. As you
have seen, a symbolic dynamics is of structure very simple, but in order
to consider the periodic rays in §2, a reduction to such a sirnple dynamics
works very well.

Let X be an oriented ray of geometric optics in 2 trapped by O in the
future and in the past, and let z(¢) (¢t € {(—00,00)) be its represention
by the length of ray measured from a point on I'. The ray X is trapped
by O means that {z(t); ¢ € (—o0,00)} is bounded. Since z(0) ison I’
there is & € {1,2,...,J} such that z(0) € I',.

Under the assumption (H.1} and (H.2), following the advance of the
time, the ray reflects on I'g, T'¢,, - - - successively and following the time
going back to the past, reflects on I'g_, I'c ,, -+ successively. Denote
the j-th reflection point by F;. So, for each ray trapped by O there
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corresponds a two sided infinite sequence of the reflection points
< Py Po, By
and a two sided infinite sequence of elements in {1,2,... ,J}

R SRR IESTRRE

such that P; € T, for all j € Z. It is clear that the above infinite
sequence satisfies £; # &4 for all j € Z.
Now, let A =[A(%, §)]ij=12,..7 be a J x J matrix given by

. 1 for i # j,
A -
(8,3) {0 for i =7,
and we introduce a set of two sided infinite sequence by
EA = {E = ( e ?g—nsg—(n—l)w S :5—1:&0161) v :E‘m s ))
&e{1,2,...,J} and A(&,&1) =1 for all }.

We have corresponded for a ray X trapped by O a two sided infinite
sequence (--- ,&_y, &, &1, ++). It is clear that this sequence belongs to
Ya.

Conversely, for each element £ € 34, there corresponds uniquely a ray
of geometric optics X(£) in Q trapped by O such that whose reflections
points P; (j € Z) satisfy

P;eTlg foralje Z.

Since the all reflection points are determined by £ € ¥4, we denote the
sequence of the reflection points corresponding to £ as

,P-1(f)=Pn(§)aP1(§)a“‘
We define a function f(£) on ¥4 by
(2.1) f(&) = IA(§) — R(E)].

For £ € £, we can find a sequence of phase functions {pg; (%)} o
satisfying for all j € Z
Ve {z)| =1 in a neighborhood of P;(§)F;.1(£),
Ve (P5(€)) is parallel to () P; (),

¢e () = e jr1{z) on Tg_ N (a neighborhood of P;.1(§)),
Dpe ;(P5(€)) is positive.



On scattering by several convex bodies 995

Let us set
Cesx) = {ys we;(y) = peslx)},

and denote by G ;(z) the Gaussian curvature of C¢ ;(z) at x. We define
a function g{£) on ¥4 by

(2.2) 3(6) = 3108 (Geo () /Geo(P(6)))-

Denote by g4 the shift operator in X4, thatis,p =04 £ = (..., 71,
o, M, ... ) means that n; = ., for all j € Z. So it is easy to see that
£ € ¥4 corresponding to a periodic oriented ray A in (Q satisfies

(2.3) oré =& for some m >0,

and the trajectry of X is given by U;-”;O] P;i(£)P;11(£). The necessary and

sufficient condition for this trajectry to be primitive is that the number m
in (2.3) is the minimum among the positive integers p satisfying o%¢ = £.

By using the notations defined up to now, we can represent the zeta
function ¢{{p) defined in the introduction as follows:

(2.4) {{p) = exp (Z % > exp Snf’(&u)) :

n=l ' ghg=t
where
(2.5) (& 1) = —pf(€) + 9(&) + V=1,
Sﬁr(&s )u') = T(&, M) + T("A&J nu) + T(Jiga |u’) +--+ T(az_1£1 [J,)
Then, we have for all oriented periodic ray X(¢) in Q satisfying o€ = &

exp (Sar(€, 1)) = (=1)" (M1 ry2)' 2 exp(—pd,),

where v denotes the closed trajectory UiZg P;(€) Pj11(€).

As to the convergence of the right hand side of {2.4), let us remark
that

fHE € Ta; oh =€} < (J -~ 1)1,
Snf(g) Z ndmim

where we set

din = m?ém inf{lz —y|; z € O, y € O;}.
[5av)
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Taking account of 0 < Ay 1A,2 < 1, the right hand side of (2.4} converges
absolutely in
(2.6) Ru> L
dmin

Now we shall see that the function defined by the right hand side
of (2.4) coincides with ¢{¢) given in the introduction. Let { € Ta
satisfy o€ = £, and the trajectory v = U"JT":‘O1 Pi{€)P;41(€) is primitive.
So, all the elements of ¥4 which give the same periodic trajectory are
{6 7 =0,1,2,... ,m — 1}, and the number of such elements is just
m. On the other hand, for n = pm, we have

exp (Sar(&, 1)) = (exp(Smr(§; u))F.
Therefore, if we set ¥ 4(7) = {€ € Ba; & corresponds to 7},

en DL Y ewswen =Y 5 (exelSurem)
el | gea(a), o7E=E, g1 P

= —log (1 — exp (Smr (¢, ,u,)))
Thus,
the right hand side of (2.4)

—ep{Y Y Y expsnr(s,,u)}

n=1 gex (), ofig=¢

_ exp {Z ( ~log (1 —exp (Smr(E,:u))))}

-

= H exp ( —log (1 — eXp (Sm'r(’s? ”))))
=11 (1 — exp (Sm'r(&,u)))_l,

where 3 or [], means that the summation or the product is taken over
all the oriented primitive periodic rays in €. So the function given by
the right hand side of (2.4) coincides with the zeta function ({;) defined
by (1.1).
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3. Solutions of the reduced wave equation

We shall consider the following boundary value problem for the re-
duced wave equation:

(-O-22u=f in Q,
3.1
(31) {u ={ on T,
where 2z is a4 complex parameter.

For Sz < 0 and f € L%*((}), the problem has a unique solution in
L*(2). Denote this solution as

u(z) = (R(z)f)(x).
Then R(z) € L{L*(Q), L*(Q)) and it depends analytically on z € {z €
C; Sz < 0}. By the regularity theorem for solutions of elliptic equations,
we may regard R(z) as an continuous operator from C§°(2) into C*(Q).
So we have that
R(z) is L{CF(Q), C*(2))-valued holomorphic function in Sz < 0.

Even though the following fact is not needed in this paper, we would
like to remark that R(z) as £{C (%), C*°(Q))-valued function of z can
be continued meromorphically into the whole complex plane, and

the poles of R{z) coincide with those of S(z).

So, the consideration of poles of scattering matrices may be reduced to
the consideration of poles of R(z).

The fact which we shall use in this paper is the following estimate
which follows immediately from the selfadjointness of A with Dirichlet
houndary condition:

(3.2) for Sz < 0.

1
R <
BN (1aon.00) S 252171
Indeed, we have by integration by parts

fﬂ f(wyule) dr

- [ (-2 - Hu@iw s

= f [Vu(z) dz - {(R2)* — ([z)® + 2i(R2)}(32) } f () |* dz.
Q L]
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Comparing the imaginary parts of the both sides, we have

2|3‘32||32|/ u(z)[dz < U f(ﬂf)u(x)dxl
Q 0

< Nzl 2y,
from which (3.2} follows.

The argument that we shall do is that, assuming that {(u) has a
sequence of poles converging to the line Ry = ug, we shall construct a
sequence of solutions of (3.1) which violates the estimate (3.2). To this
end, we shall construct an asymptotic solutions of (3.1) for an oscillatory
data f(z), by using the method in [3] and [5].

3.1. Construction of asymptotic solutions

Let f be an oscillatory function in @ with a parameter z € C given
by

(3.3) f(z,2) = e g(x),
where ¢ is a real valued smooth function satisfying
(3.4) [Ve(z)| =1

and g € C§°(?). We will construct an asymptotic solution of the problem
(3.1). First we look for u()(z, z) of the form

(3.5) uy(z, z) = e @y (x),

which satisfies

(3.6) (-A — 2Pz, 2) = f(z,2) in R

If ¢ satisfies (3.4), in order to satisfy (3.6), it suffices to satisfy
(3.7) 2Vp(x) - Vu(z) + Ap(z)u(z) = g(z).

Next, we construct ug)(z,z) ( = 1,2,...,J) of the form
ug)(z, z) = e*"z“’(i)(’:}v(j) (z),
which satisfy

g A~ Pugle:) = e PAe) in RI\D;,
U(j)(a:,z) +U(0)(I,Z) =0 on I},
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To satisty (3.8), we require the following:

|V (z)f = 1,

p((z) =@z} on Ty,

2V () - V() + Doy {z)vgy (z) =0,
v (x) +v(z) =0 on T

Next for each u(j(z, z), we construct for k # j a function ;4 (x, 2) of
the form

Uz, 2) = ey (3),
satisfying
(3.9) {(_A = 2 (@, 2) = €200 Mg (@) in B\ O,
(T, 2) +ugy(z,2) =0 on T
To satisfy (3.9), we require
Veunlz)l =1,
(3.10) (i) (z) = wi)(z) on Ty,

2V (0(E) - V() + Aopmn{zivgmn(z) =0,
vz} + v (z) =0 on Ty,

In order to repeat this procedure, we prepare some notations. For
n=1,2,..., weset

I, = {i: (iyin,.. . in); i € {1,2,... , J}
and A(ij,4541) =1 forall j =1,2,... ,n— 1},
and
I=u®, 1.

Suppose that, for all i € I,, ui(z, z) = e"*:@y;(z) is defined. For j
= (1,k) € I,;,, we define u;(z, z) = e~y (z), in such a way that u;
satisfies

o[BIl =G n BT
) ui(z, 2) +ui(z,2) =0 on Iy,
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To this end, we choose the phase function ¢; and the amplitude function
v; in this way:
IVip;(z)| = 1,
piz) =wilz) on T,
2Vp;(x) - Vv(z) + Dps(a)vi(z) =0,
vi{z) +vi(z) =0 on Iy,
By this procedure, we can define successively u; for all j € I. Now
we define u(z, z) by
(3.12) u(z,z) = Z u;(z, z).
jel
Suppose that there is a constant gy such that
for &z < ag, the right hand side of (3.12) converges absolutely.

Then, by taking account of the second equality of (3.11), we have for all
Fz < ap

(3.13) u{z,z) =0 on L.

Similarly by using the first equation of (3.11), we have

(3.14) (—A — 2u(z, 2) = f(z, 2) + Z e i) Awy(x),
jer

What we want to emphasize here is that, comparing (3.13) and (3.14)
with the problem (3.1) which we want to solve, the function u(x, z} has
a property that after operation of (—A — 2?) the error term has the
same form as u(zx, z). The changing part is only the shape of amplitude
functions.

3.2. Ruelle operator

To get informations on analyticity of u(x, z) of (3.12), it is crucial to
express u by Ruelle operator, which is a linear operator of a symbolic
dynamics. So we shall start with giving some notations and fundamental
facts relating to symbolic dynamics(Bowen [1], Pollicott [7]).

For a function k(&) on X4, we set

var, k = sup {|k(€) — k(¢)]; & = & for all [i < n},
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and for 0 < 8 < 1,
varnk

g

||Etle = Sup
We set
koo = sup ()], and {|lk|lls = lI&ls + [1&]|<0,

and introduce a space F¢(24) of functions on £, by

Fo(E4) = {k(&); N|kflle < oo}

When the conditions (H.1} and (H.2) are satisfied, the functions f(£)
defined by (2.1) and g(¢) defined by (2.2) belong to Fp(X,), where the
constant 0 < # < 1 is determined by the configuration of ©.

Now introduce a space of one sided infinite sequences
Eﬁ = {g = (50:51552}’ * )7 A(gi:gi-l-]) =1 fOT a'u 1 ) 0}
For each k € {1,2,...,J}, choose a sequence (:-- ,n(_kQ) ,n_l,nuk))
such a way that nék) = k and A(vry_J l,n(k)) =1for 3=0,1,2,.... For
= (- ,&.1,E,E1, ), we define an element e(€} of £, by
e(f) ( 17](&2)1 7?_1,710 3611621 )
when £ = k. Evidently, we have
e(6) = el¢) if &=§ forj>0.

For (£, u) defined by (2.5), we shall construct a function #(£, u) and
x(§ ) by

(3.15) X&) =3 {r(@h&p) — r(ohe(©). )},
(3.16) F(E, uy = 7(&, 1) — x(&, ) + x(oa&, p)-

Then, it s easy to check
FEp) =7 ,p) i §=¢& forj>0,

This fact shows that the function #(£, u) can be regarded as a function
on ¥7}. And also we see immediately

(3.17) SaF(e 1) = Swr(6u) i o€ = €.

This relation shows that, in order to consider the zeta function ¢(z),
r{&, 1) may be replaced by 7(£, ), which is a function of X}, and we
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may consider ((x) on the space X}, Also, to make analysis in X7, it is
known that a linear operator in F3(X}) called Ruelle operator plays a
very important role.

The Ruelle operator £, is defined as follows:

(3.18) (Luh)(E) =D €™h(n) for he Fo(TH).
aan=£
Related to £,, we introduce another operator |£,| defined by

(3.19) (L, B)(E) = D 1€ h(n) for he Fo(Eh).
ean=§
The Perron-Frobenius Theorem implies that there exists a real num-
ber ap such that

|£4,| has 1 as a simple eigenvalue and all the other spectrum
are contained in {s € C; |s} < 1 — ¢} for some € > 0.

Concerning the relationship between ({1} and Ruelle operator, it is
known that the abscissa of absolute convergence ug of ((u) coincides
with this ag, and that the following fact holds(Haydn[2], Pollicott{7]):

THEOREM 3.1. There exists €5 > 0 such that, in a slab domain {§: €
C; o — g9 < Ru < pg}, the necessary and sufficient condition for p to
be a pole of {(u) is that Ruelle operator £, has 1 as an eigenvalue.

3.3. Representation of u(z, z) by Ruelle operator

By the argument in {5, Section 4] the asymptotic solutin u(z, ) given
by (3.12) for Sz < —pg can be represented as

(3.20) u(z,z) = Z ('Rf) i L h(]) (€Y + w(z, z),

j=1 n=0
where we take 4 = iz, and £U) is a fixed element in Fy(X}) such that
{,gj) = j. In (3.20), we have the following:
(i) w(-, z) is L*(£2)-valued holomorphic function in Sz < —pug + €.

(i1) ’R,(f) is a bounded operator defined in Ry > pg — ¢ depending
smoothly on z € 2.
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(iii) kg € Fp(Z}) is determined by p and g in (3.3).
Similasly, where the error term in (3.14) also has the following ex-
pression

J o0
321) Y e PAy(z) =Y (7"2&“ > L ho) (D) + iz, 2),

jer j n=0

where TELI} and w(z, z) have the same properties as Rﬁfﬂ and w(z, z}
respectively.

4. Proof of the theorem

Suppose that g = sy satisfying
o — €0 < Rsg < po

is a pole of (). Then from Theorem 3.1, £, has 1 as an eigenvalue.
Here, for the sake of simplicity, we assume that 1 is a simple eigenvalue
and L, has the following decomposttion:

‘CSO = IPSU + QSD
where P, and Q,, satisfies
Pso Qso = QsoPsn = 01
dimrange?,, = 1,
spectral radius of Qg < 1.

Then by the perturbation theory of bounded operators, we have for all
1t very close to sg

(4.1) Lp=MNP,+Qy
such that
P.Q.=Q,P,=0,
dimrangeP, = 1,
spectral radius of Q, < 1,
Ap # 1= Aq if p # s,

Ay — Ay, when g — 5.
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If the decompositon (4.1) can be continued analytically from Ry > pg
to sp, the right hand side of

[ve] P o0
nZ:Oﬁgz 1—u)~“+; o

also can be continued analytically near to sp. Since the spectral radius
of @, is less than 1, >°>7 Q7 is bounded for all y near sp.

Let us choose the function g(z) in (3.1) in such a way that the corre-
sponding hq satisfies

‘Pso ho 7£ 0.
Then, even though the proof is very complicated and long, we get
(4.2) I (REPg, o) (691120 = &1 > .

Concerning the detailed proof of this estimate, we are preparing a paper([6]).
On the other hand we have

(43) | (REOPu ko) €|z < e
Moreover, between the constants ¢; and ¢y, we have an estimate
(4.4) ez < Cye,

where Cj can be chosen as a uniform constant in pg — £y < Ry < yy.
Then, for u close to sy we have

€1

(4.5) Il DMz 2 757 = 1.
On the other hand, we have
g Co
(4.6) (2 2) + D e B0y < TSR Cs.

jel
Recall that the problem (3.1) has an estimate (3.2). Then, the esti-
mates (4.5) and (4.6) give an inequality

5] 1 Co
] - < ( + C ) .
L= 77 20 —eo)[Ssof \[1— A T
i tending to sg, we have from the above estimate

1
€] & ————————0Cy.
L= 2(po — £0}|Ss0] ?



On scattering by several convex bodies 1005

The above inequality and the relation {4.4} give us

Gy € — 0

2(uo — £0)
This estimates shows that, in a slab domain gy — 2 < p < gy, the
imaginary part of a pole of {(u) is bounded. This is what we want to
show.

References

(1) Bowen, R., Equilibrium states and the ergodic theory of Anosov diffeornorphism,
Lecture Notes of Math. Springer-Verlag, 476 (1975).

(2] Haydn, N., Meromorphic extension of the zeta function for Aziom A flows, Th.
& Dynam. Sys. 10 (1990), 374-360.

(3] Ikawa, M., Singular perturbation of symbolic flows and poles of the zeta functions,
Osaka J. Math. 27 (1990), 281-300.

., On the distribution of pales of the scattering matriz for several convex

bodies, Proceedings of Conference in Honor of Prof. T. Kato, “Functional analysis

and its applications”, Lecture Notes of Math. Springer-Verlag, 1450 (1990),

[4]

210-225.

5] , On zeta funciion and scatiering poles for several convex bodies, Journées
“Equations aux dérivées partielles” St. Jean de Monts, 1994,

i6] ; On enalytivity of zete function and scattering poles for severel convex

bodies, in preparation.
[7] Pollicott, M., Meromorphic extension of generalized zeta function, Invent. Math.
85 (1986), 147-164.

Department of Mathematics
Kyoto University

606-8502 Kitashirakawa

Sakyo, Kyoto, Japan

E-mail: ikawa@kusm.kyoto-u.ac.jp



