Sliding Mode Control with Uncertainty Adaptation for Uncertain Input-Delay Systems

시간지연 시스템에서의 불확실성 추정을 갖는 슬라이딩 모드제어

  • Roh, Young-Hoon (The Digital Appliance Research Center of LG Electronics) ;
  • Oh, Jun-Ho (Dept. of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
  • 노영훈 (LG전자 디지털 어플라이언스 연구소) ;
  • 오준호 (한국과학기술원 기계공학과)
  • Published : 2000.11.01

Abstract

This paper deals with a sliding mode control with uncertainty adaptation for the robust stabilization of input-delay systems with unknown uncertainties. A sliding surface including a state predictor is employed to compensate for the effect of the input delay. The proposed method does not need a priori knowledge of upper bounds on the norm of uncertainties, but estimates those upper bounds by adaptation laws based on the sliding surface. Then, a robust control law with the uncertainty adaptation is derived to ensure the existence of the sliding mode. A numerical example is given to illustrate the design procedure.

Keywords

References

  1. R. DeCarlo, S. H. Zak, and G. P. Matthews, 'Variable structure control of nonlinear multivariable systems: A tutorial,' Proc. of IEEE, pp. 212-232, 1988 https://doi.org/10.1109/5.4400
  2. Y. A. Fiagedz and A. E. Pearson, 'Feedback stabilization of linear Autonomous time lag systems,' IEEE Trans. Automat. Control, vol. 31, pp. 847-855, 1986 https://doi.org/10.1109/TAC.1986.1104417
  3. T. Furukawa and E. Shimemura, 'Predictive control for systems with time delay,' Internat. J. Control, vol. 37, pp. 399-412, 1983 https://doi.org/10.1080/00207178308932979
  4. J. K. Hale and S. M. Verduyn Lunel, Introduction to functional differential equations, Springer-Verlag, New York, 1993
  5. J. Y. Hung, W. Gao, and J. C. Hung, 'Variable structure control: A survey,' IEEE Trans. on Industrial Electronics, vol. 40, pp. 1-22, 1993 https://doi.org/10.1109/41.184817
  6. A. J. Koshkouei and A. S. I. Zinober, 'Sliding mode time-delay systems,' Proc. of Int. Workshop on VSS, Tokyo, pp. 97-101, 1996
  7. W. H. Kwon and A. E. Pearson, 'Feedback stabilization of linear systems with delayed control,' IEEE Trans. Automat. Control, vol. 25, pp. 266-269, 1980 https://doi.org/10.1109/TAC.1980.1102288
  8. X. Li and C. E. Souza, 'Delay-dependent robust stability and stabilization of uncertain linear delay systems: a linear matrix inequality approach,' IEEE Trans. Automat. Control, vol. 42, pp. 1144-1148, 1997 https://doi.org/10.1109/9.618244
  9. A. Z. Manitius and A. W. Olbrot, 'Finite spectrum assignment problem for system with delays,' IEEE Trans. Automat. Control, vol. 25, pp. 266-269, 1979
  10. Y. H. Roh and J. H. Oh, 'Robust stabilization of uncertain input-delay systems by sliding mode control with delay compensation,' Automatica, vol. 35, pp. 1861-1865, 1999 https://doi.org/10.1016/S0005-1098(99)00106-5
  11. J. C. Shen, B. S. Chen, and F. C. Kung, 'Memoryless stabilization of uncertain dynamic delay systems: Riccati equation approach,' IEEE Trans. Automat. Control, vol. 36, pp. 638-640, 1991 https://doi.org/10.1109/9.76374
  12. K. K. Shyu and J. J. Yan, 'Robust stability of uncertain time-delay systems and its stabilization by variable structure control,' Internat. J. Control, vol. 57, pp. 237-246, 1993 https://doi.org/10.1080/00207179308934385
  13. D. S. YOO and M. J. CHUNG, 'A variable structure control with simple adaptation laws for upper bounds on the norm of the uncertainties,' IEEE Trans. Automat. Contr., vol. 26, pp. 860-864, 1992 https://doi.org/10.1109/9.256348
  14. L. Yu, J. Chu, and H. Su, 'Robust memoryless $H_{\infty}$ controller design for linear time delay systems with norm-bounded time varying uncertainty,' Automatica, vol. 32, pp. 1759-1762, 1996 https://doi.org/10.1016/S0005-1098(96)80016-1
  15. 노영훈, 오준호, '불확실성을 갖는 시간지연 시스템에서의 강인한 안정화를 위한 슬라이딩 모드 제어기', 제어.자동화.시스템공학 회(KACC) 학술대회 논문집, pp. 811-814, 1998