Antioxidative Activity on Human Low Density Lipoprotein(LDL) Oxidation by Pentagalloic Acid

  • Ryu, Beung-Ho (Department of Food Science and Biotechnology, Kyungsung University) ;
  • Kim, Hee-Sook (Department of Food Science and Biotechnology, Kyungsung University) ;
  • Moon, Yoon-Hee (Department of Food Science and Biotechnology, Kyungsung University) ;
  • Yang, Seong-Taek (Department of Food Science and Biotechnology, Kyungsung University)
  • Published : 2000.09.01

Abstract

The aim of this study was to investigate the efficiency of the pentagalloic acid compound in inhibiting the metal ions and cell lines that mediate in low density lipoprotein (LDL) oxidation. Pentagalloic acid prolonged the lag time preceeding the onset of conjugated diene formation. In chemically induced LDL oxidation by Cu$^2$(sup)+ plus hydrogen peroxide or peroxyl radical generated by 2, 2-azo-vis (2-amidino propane) hydrochloride (AAPH), pentagalloic acid inhibited LDL oxidation as monitored by measuring the thiobarbituric acid reactive substances(TBARS), malondialdehyde(MDA), and gel electrophoretic mobility. The physiological relevance of the antioxidative activity was validated at the cellular level where pentagalloic acid inhibited mouse macrophage J774 and endothelial cell-mediated LDL oxidation. When compared with several other antioxidants, pentagalloic acid showed a much higher ability than naturally occuring antioxidants, ${\alpha}$-tocopherol and ascorbic acid, and the synthetic antioxidant, probucol.

Keywords

References

  1. N. Engl. J. Med v.320 Beyond choesterol Modifications of low density lipoprotein that increase its atherogenicity Steinberg, D.;S. Prthasarathy;T. E. Carew;J. C. Khoo;J. L. Wiztum
  2. J. Clin. Invest v.88 Role of oxidized low-density lipoprotein in atherogenesis Witztum, J. L.;D. Steinberg
  3. Proc. Nartl. Acad. Sci. USA v.78 Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endotherial cell;rdcognition by receptor for acetylated low density lipoproteins Henricksen, T.;E. M. Mahoney;D. Steinberg
  4. BioChem. J. v.270 The oxidative modification of low density lipoproteins by macrophages Leake, D. S.;S. M. Rankin
  5. Atherosclerosis v.4 Endothelial and smooth muscle cells after low density lipoproteins in vitro by free radical oxidation Morel, D. W.;P. E. DiCorleto;G> M. Chisholm
  6. Free Fadic. Biol. Med v.9 Role of oxidatively modified LDL in atherosclerosis Steinbrdcher, U. P.;H. Zhang;M. Lougheed
  7. J. Clin. Invest v.84 Evidence for the presence of oxidatively modified low-density lipoprotein in atherosclerotic lesions of rabbit and man Yla-Herttuala, S.;W. Palinski;M. E. Rosenfeld;S. Parthasarathy;T. E. Carew;S. Butler;J. L. Witztum;D. Steinberg
  8. Atherosclerosis v.11 Rabbit and human atherosclerotic lesions contain lgG that recognizes MDA-LDL and copper-oxidized LDL Yla-Herttuala;S. L. Burtler;S. Picard;W. Palinsky;D. Steinberg;J. L. Witztum
  9. Atherosclerosis v.8 presence of modified low density lipoprotein in human Arogaro, P;G. Bittolo-Bon;G. cazzolato
  10. Lancet v.342 Dietary antioxidant flavonoids and risk of coronary heart disease;The Zutphen Elderly Study Hertog, M;E. Feskens;P. Hollman;M. Katak;D. Kromhout
  11. Lancet v.339 Wine, alcohol, platelets, and the French Paradox for coronary heart disease Renaud, D;M. De Lorgeril
  12. Lancet v.341 Inhibition of oxidation of human low density lipoprotein by phenolic substances in red wine Frankel, E. N.;J. Kanner;J. B. German;E. Parks;J. E. Kinsella
  13. Curr. Opin. Lipidol v.3 Antioxidants and atherosclerosis Jialal, I;C. Scaccini
  14. Chemistry section Abstracts of lectures at the 5th all union symposium on phenolic compounds Mavlyanov, S. M;S. Y. Islambekov;A. K. Karimov;K. O. Gnatechen
  15. J. Clin. Invest v.34 The distribution and chemical compositon of ultracentrifugally separated lipoproteins in human serum Havel, R. J.;H. A. Eder;J. H. Bragdon
  16. Free Radic. Res. Commun v.6 Continuous monitoring of in virto oxidation of human low density lipoprotein Esterbauer, H.;G. Striegl;H. Puhl;M. Rotheneder
  17. Anal. Biochem v.149 Determination of malomdialdehyde by ion-parirng high performance liquid chromatography Bull, A. W;L. J. Matnett
  18. Anal. Biochem v.19 Indometric measurement of lipid hydroperoxides in hyman plasma Cramer, G. L.;J. R. Miller;R. B. Pendleton;W. E. M. Lands
  19. Biochem Med v.15 A simple fluorometric assay for lipoprotein in blood plasma Yaki, K
  20. Electrophoresis v.14 Detection by nile red of agarose fel electrophoresed mative and modified low density lipoprotein Greenspan, P;R. L. Gutman
  21. J. Clin. Invest v.27 Culture of human endothelial cells derived from human umbilical vein Jaffe, E. A.;R. L. Nachman;C. G. Becker;C. R. Minick
  22. J. Biol. Chem v.193 Protein measurement with the Folin phenol reagent Lowry, O. H.;N. J. Rosebrough;A. L. Farr;R. J. Randall
  23. Free Fadic. Biol. Med v.15 Molecular pharmacology of vitamin E;Structural aspects of antioxidant activity van Acker S. A. B.;L. H. Koymans;A. Bast
  24. Free. Radic. Biol. Med v.13 The role of lipid peroxidation and antioxidative modificarion of LDL Esterbauer, H;J. Gebicki;H. Puhl'G. Jurgens
  25. Free. Radic. Biol. Med v.9 Role of oxidatively modified LDL in atherosclerosis Steinbrecher, U. P.;H. Zhang;M. Lougheed
  26. J. Clin. Invest v.87 Minimally modified low density lipoprotein is biologically active in vivo in mice Liao, F, J.;A. Berliner;M. Mehrabian;M. Navab;L. L. Demer;A. J. Lusis;A> M. Fogelman
  27. FEBS Lett v.341 Ascorbic acid can either increase or decrease low density lipoprotein modirication Stait, S. E.;D. E. Leake
  28. Atherosclerosis v.89 Probucol, a superoxide free radical scavenger in vitro Bridges, A. B.;N. A. Scott;J. F. Belch