Journal of Korean Society of
Coastal and Ocean Engineers
Val. 12, No. 3, pp. 116~129, September 2000

Wave Deformation by Submerged Flexible Circular Disk
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Abstract [ The interaction of incident monochromatic waves with a tensioned, flexible, circular membrane
submerged horizontally below free surface is investigated in the frame of three-dimensional linear hydro-elastic
theory. The velocity potential is split into two parts i.e. the diffraction potential representing the scattering of
incident waves by a rigid circular disk and the radiation potential describing motion induced waves by elastic
responses of flexible membrane. The fluid domain is divided into three regions, and the diffraction and radiation
potentials in each region are expressed by the Fourier Bessel series. The displacement of circular membrane is
expanded with a set of natural functions, which satisfy the membrane equation of motion and boundary
conditions. The unknown coefficients in each region are determined by applying the continuity of pressure and
normal velocity at the matching boundaries. The results show that various types of wave focusing are possible by
controlling the size, submergence depth, and tension of membrane.
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1. INTRODUCTION

Various wave barriers using flexible membrane have
been proposed for the temporary protection of coastal
regions and construction sites. The flexible membrane is
easy to carry, inexpensive, reusable, and rapidly deploy-
able and removable, and therefore, can be used for a vari-
ety of coastal/ocean applications, which require rapid and
cost-effective solutions. The flexible membrane may also
be used as a device for focusing or spreading wave energy.

In this paper, the deformation of plane monochromatic
incident waves by a submerged flexible circular disk is
investigated.

The interaction of incident waves with a two-dimen-
sional vertical membrane in tension has been investigated
by Thomson et al. (1992), Kim and Kee (1996}, and Kee
and Kim (1997), and Williams (1996), They used a ten-
sioned-string dynamic model to solve the motien of the
tensioned membrane per unit length. The tensioned mem-
brane can be considered as the limiting case of the ten-
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sioned-beam plate as the bending stiffness approaches
zero. The performance of the elastic-beam wave barrier
clamped at the seafloor without tension was investigated
by Lee and Chen (1990) and Williams ef al. (1991). Cho
and Kim (1998 recently studied the performance of a ten-
sioned horizontal flexible membrane as a wave barrier
and their experimental results reasonably followed their
numerical predictions.

On the other hand, the diffraction of incident waves by
a submerged rigid circular disk in the horizontal plane was
investigated by Yu and Chwang (1993). By means of the
separation of variables, the fluid domain was divided into
three regions and the scattering potentials in each region
were expressed by the product of unknown coefficients
and the Bessel functions. The unknown coefficients were
determined by applying the matching conditions at the
common boundaries of neighboring regions. The resulting
wave field around the disk was shown for various incident
wave conditions and disk parameters. They also showed
that wave focusing was apparent, in some cases, near the
rear of the disk.

In this paper, the interaction of plane monochromatic
waves with a tensioned, flexible, circular membrane sub-
erged in the horizontal plane, is investigated in the con-
text of linear hydro-elastic theory, The initial tension is
assumed to be uniform in the radial direction and the
edge of the membrane is assumed to be fixed in space.
The vertical displacement of the circular membrane is
represented by a series expansion using natural func-
tions. The natural functions and membrane responses are
obtained by solving the two-dimensional wave equation
given in polar coordinate with specified boundary con-
ditions. The diffraction and radiation potentials are
solved by means of the eigen-function expansion
method. The solutiens are separately obtained in each
sub-region and they are matched at the common vertical
boundaries.

The primary concern in this study is the deformation
of incident wave ficld by the presence of a tensioned,
flexible, circular membrane submerged in the horizontal
plane. Sec.2 describes mathematical formulation of dif-
fraction and radiation problems and membrane dynam-
ics. Various numerical examples are presented and the
results discussed in Sec.3. Concluding remarks are given
in Sec.4.

2. MATHEMATICAL FORMULATION

We consider a horizontally submerged flexible-mem-
brane disk of radius a, as shown in Fig. 1. For analysis, a
polar coordinate system (r, 8, y} is chosen with the origin
on the undisturbed free surface and y-axis pointing verti-
cally upwards. The depth of water is denoted by % and the
submergence depth of membrane by d. The tension 7T is
applied uniformly on the membrane in the radial direc-
tion. The water is assumed to be incompressible and invis-
cid, so that the fluid particle motion can be described by
a velocity potential @. It is also assumed that wave and
membrane motions are smail to allow linear hydro-elastic
theory for the present study.

Under the assumptions stated above, the velocity poten-
tial and the vertical displacement of membrane can be

written as
O(r,0,y,0=R[0(r,0,y)e"™]
§(r.0.0=R[E(r,0)e™"] ()

where w is the angular frequency of monochromatic incident
waves and &(r, 8) is the complex displacement of membrane
motions.

The complex displacement of membrane may be exp-
anded as follows using a set of natural modes:

L(r8)= 3 ¥ g, pw,(r,8) ®)
p=0j=1

 Seg—
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|

Fig. 1. Definition Sketch of Horizontal Disk Membrane.
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where ¢ is the unknown complex amplitude correspond-
ing to the (p, j) th mode. The value of (p, j) denotes the
number of natural modes in the (0, #) direction, respec-
tively. The natural functions and frequencies of the mem-
brane can be easily obtained by the membrane equation of
motion with the fixed-end conditions.

w,(r.8)=J,(Q, /a)cospt (3)

where €, are the zeros of Ji{£2,)=0, p=0, 1, 2, 3,... The
values of these zeros are available in Abramowitz and
Stegun (1972).

The natural functions wy (r, 8) in Eq. (3) satisfy the fol-
lowing orthogonal relation:

Ny= I;" 5; W, (r,8)w,(r,0) drd@

2
S4BT (Q,)p=q and i=]

0 otherwise
p.a=0,1,2...

The symbol 8, is Kronecker delta function by 8w=0, 8,=0,
p=12,... Guided by the expansion of membrane motion, the
velocity potential ¢(r, 6, ¥) can be written in the form:

¢(r,e,y)="—fuﬁéo{%(r,ynébqp,-qaz}(r,y)}cospe

)=} () +a5(r.y) (5)

where ¢f,, ¢/, and ¢% are diffraction, incident, and scat-
tering potentials, and q:gj denotes the radiation potential
corresponding to the jth mode for each pth mode, respec-
tively. From now on, we set the incident wave amplitude
A to be unity for convenience. The incident wave potential
¢f is given by

o=k e ©)
where k, is the wave number for progressive waves and
satisfies P=gk, tanh ks with g being the gravitational
acceleration. The symbol f,=1, when p=0, and B,=2(iF,
when p21.

2.1 Diffraction Problem

In this section, we first consider the diffraction of inci-
dent waves by a rigid horizontal disk. The scattering po-
tential §7 satisfies

19 &
—+-+ ~——— =0,p=0,1,2,...mthe fluid domain
;i oror a
N
with the following boundary conditions
e o
———vis=0 on y=0 (v=—) 8
]
iJI;:O on y=—h @
¢P
——0 on y=—d, |fi<a (10)
and
(klr)w(%—ikl)m‘;—)() as kyr—oe (11

The fluid domain is divided into three regions as shown in
Fig. 1, ie., (T} the exterior region outside the disk {Irza, —h
<y<0); (II) the interior region above the disk (Ii<a, —d
<y<0); (I) the interior region below the disk (ri<a, —h
<y<—d).

By using separation of variables and applying above
boundary conditions, we can obtain the general expres-
sion of ¢, in the three subregions:

o =B,k P+, (e ) 1f1o(0)

+ 2 Cprle(klur)f]n(y) (]2)

05 =ty ka0 5, Qpnl K YorlY) (13)
p(3) r &

O =byo{ 2 | o)+ § bl ) (14)

where J, and ¥, are the Bessel functions of the furst and sec-
ond kind of order p; H, is the Hankel function of the first
kind of order p; I, and K, are the modified Bessel functions of
the first and second kind, respectively, of order p.

The eigenfunctions f.(y), fu(¥} and fi{y) are then given by

coshk, (y+h)

coshkh n=0

Finln)= LOSk,n(y+h) (1s)

cosk,ft

coshk,(y+d} -0
coshk,d ' =
fon¥)= (16)

cosk,,(y+d) .
cosk,,d
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_ cosks,(y+h)
f3n(y)_cosk3n(h_d)’ nz0 (17)

The corresponding eigenvalues kin, kza, k3. are the solu-
tions of the following equations:

2
kytanhk, i=2, n=0
. (18)
ki tank, h=——, nz1
g
mZ
kytanhk,d=—, n=0
‘) (19)
kzntank2"d=—£, nz1
g
kh:(%d), n=0 (20)

The unknown coefficients ap",bpn,cpn(p,nz(),1,2,...),

are determined by invoking continuity of pressure and radial
velocity on r=a. The continuity of ¢f, on r=a requires

(B, (k1) e ,gH, (kg ) [Fio(y)

+3 0K (@)l (212)

n=1

ap()']p(kza)f}.[)(y)+ﬂ°z:.lapn1p(k2nan2n (y)r —dSySO

Bpofrly)+ i} Byl (K@ )f3,(¥), —hSys—d

(21b)

Multiplying (21a) by the orthogonal eigenfuction fify)
and integrating over [—d, (], we obtain

(BT (k@) +c ol (kia)] T+ E oKy,
n=1

={apon(kza)N§’,l=0 o
ayd Uya) N, 121
where

Fiy= L))y

NP i=n
0, I#n

£, fz,,(y)ﬁ;(y)d.w{

Similarly, by multiplying (21b) by fu(y) and integrating
with respect to y from —4 to —d, the following equation

can be obtained:;

[Bp.]p(k,a) e (@) At X ConK k) g}y,
n=|

(23)

_{b oG =0
by (k)N 121

where

Ap= I:i Sy

1)
I=
[ ﬁn()’)fzz()’)d)m{ e

0, l#n

The continuity of 34},/0r on r=a gives
kB ke, (kia)lfioly)
+ 5 ok K, (k1,0 (9)

Akl (kslfool3)+ B tpaksnlklfn(y), ~dSy<0
(E]bPOfJO(y)'*'Hzl bpnkfinl_;(k}nalﬁln(y); —h Syﬁ—d

(24)

where J(k,a)=dJ,(k,rVdikl,_, , etc
By multiplying both sides of Eq. (24) by fi.(v) and inte-

grating with respect to y from —k to 0, we obtain
Ky [B, k)t (K @) Ny "= ko () g
DT LI ()
+,,2, bpnk3n1:1(k3na)An0’ =0
otk Kol )N "= a0k (s Ty
+§lapnk2n¢(k2na)rnt+(g]bpvoz
+ $ byl kg 121 (25)

where

N i=n

0, I#n

J{,]_;, ﬂn()’)f1t()’)d)’={

The final matrix equation can be obtained after substitut-
ing Eqs. (22) and (23) into (25):

X

i

2, F[)k Ji]
ot Copp= J4=0
W N H oy GNUH, ()
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o F, X 2.2 Radiation Problem
Cpr+kzbk ,N(l); Cpi= 1\/“)[;’r 21 (26) In this section, we study th tion of outgoi
Dk NUK Ry Tk NUK () \ y the generation of outgoing
" waves due to the elastic response of a flexible-membrane
where
disk of negligible thickness. The boundary-value problem
Fo= for the radiation potential is the same as that of scattering
f:Hp("]ﬂ)f;(kza)roorm e kz,,Hp(kla)I:,(kz,,a)l"nOl",,, potential (Egs. 7-11) except the following body boundary
J p(kla)Néz) =1 I (kz2) N condition.
(@ Agehar = ko (@) (kay@)A oA, a5,
_(B}Hp 1 3)oo o & kaeFl(kya)l (ks 33 ofhny ﬁi:—im& on y=—d}i<a 28)
o N E LN, 9
Fu= The radiation potentials in each region can be expressed as
kK (k@) (o) Toly & koo, @l follows
LD A Lan®

ﬁ(gwp(klkamom% o ks, K (@ (esn@) A s
NP LN

Xp=

By i) o) Ty ko (k)T

T ea)Ng A= Lk, )N
+[E\B,,1,(kla)AwAm+ g AT ANV
N e

-k Bp‘,_:(k 1“)N§)] )810

For each fixed p, the above equations constitute a linear
simultaneous algebraic equation in terms of the unknown
constants ¢ (=0,1,2,...). For numerical solutions of Eq. (26),
we truncate the series after N-th term. Thus, we have (V+1)
unknowns of ¢,. The unknown constants g, b, (i=0,1,2,...)
for regions I and III can be easily evaluated using the fol-
lowing equations derived from Egs. (22) and (23):

1B, k) cyul @) Ton 3, €K (k)T

a,= , 1=0
Jla@)Ng
1B, 1)+ oy kTt 3 k() i
8= . . Iz
Ip(kua)Ng
[BpJp(k]a)+CpOHp(kla)]ADU+k£]Cpka(klka)AOk
b= Nf)” , =0
[B i)+ c,oy ksl 3 ek, (ki)
P~ > =

Lk )N, (27)

O "= Chol, (kirfio0)+ 5 k(i) (29)

O = ol ) 5, oyl oV 205 )
(30)

¢;§3)= b‘{,o(éjuﬁo(y)i-’z] ff;,,,lp(khrlfsn()’)+%D&’%3)(r,y)
Gh

In particular, the radiation potentials in regions It and III
can be expressed by the sum of homogeneous solutions
and particular solutions, The homogeneous solutions sat-
isfy the zerc-normal-velocity condition on the disk sur-
face, while the particular solutions J)i‘,- satisfy the follow-
ing body boundary condition there:

~p
%:—iwp(ﬂpjr/a) on y=—d,Ji<a 32)
¥

The particular solutions in regions {(II} and (III) can be

obtained by the method of separation of variables:

oy (ry)=

—iOJJP(QPJ-r/a)[(Qp/a)cosh(ﬂpj)/a)+vsinh(ij)/a)]
(Q, /@[, a)sinh(,,d/a) +veosh(€, /) |

(33)

) —ip(Ld,ma)cosh[ €, (y+h)/al
Or; (Y= (€1, /a)sinh[€2,(h—d)/a]

(34)

We next apply the matching conditions (the continuity of
velocity potential and its normal derivative) to solve for
the unknown constants in each region. The matching con-

ditions to be satisfied at r=a are
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)
9P,
2
0 {“’7?3’, ~sy<0 ag) [T

R
DD, chsysa O aqf’“’

—asy<()

, —h<ys—d

(35)

By following the same procedure, as in the diffraction
problem, we finally obtain algebraic equations for the
unknown constants cj,,(l:O, 1,2,3,...N) for each fixed p:

N Fy C"
= orc”N‘ K "k,

, 1=0,1,2.3..N
(36)

.U

gl
$ K (k)
where

XL%’{J" CEARER) ‘“'y o»)dy+r"—;f o»)dy}

(37)

The other unknown coefficients can be determined from

hor
o @)t 3k, hua) o1, 85 ity
(k)N '
=0
=
C’,r;OHp(k]a)FIO+k§;IC{)EKp(klka)rfk_?Jﬂ ¢§j J(a Ylful¥)dy
Ip(klla)Ngz) ,
121
Héﬂ‘
oot 3. 4K, (2) A "”[;f B (@ sal)dy
N ’
=0
b=
i N i p(3}
CJpDHp(kla)A.'O-'-k;Cprth(kaa)Alk_;f:zq)Rj (@Y (y)dy
Ip(k:”a)N;B] ,
1 (38)

2.3 Membrane Responses
The motion of circular membrane is governed by the

linearized membrane equation

_§ 18 la_é}
ar rar

=—ipa[$(r,8,-0)-¢(r,0,~)] (39)

where m is the mass per unit area. Substituting Eqgs. (2)
and (5) into (39), the equation of motion can be rewritten

as follows:
- 3 ra T
PghF ijﬂ:T? Tror _£ e :}W pj(r,e)pﬁj(r,e)}
=p§bpn(r,e) (40)
where
pRj(r,B)=pg[¢%3}(r,—d)— Rfiz)(r,—d)]cospﬁ
Polr.8)=pglty (r,~d)~4fy " (r,~dYlcosp@ A1)

Muliiplying Eq. (40) by wy(r, 8) and integrating over the
entire area of disk, we obtain the equation of motion of

circular membrane-in the form
g g

z{x,j-m (M+ag)—iobye,=F,i=12,..., q=0,1,2,...
" (42)
where
QY.
K- T(1+5q0)n( p )Nq,., i=j 30
0, 12f
m(1+8, N, i=]
l;i:{ ( q()) qi -/ (43b)
0, i

zbm{ }
(43c)

l 2
bij:pgbs{ﬂ‘) ) j';pRj(r,G)nvq,-(r,G)drdB}

Q.
=pg1‘t(1+5q0)3{ (A T Jp(“fr }”}

(43d)
F,.=p§b [ 2 po(r.8)rw ,(r,8)drde

=pgn(1+5qu){f" G S T TR [Q }i } (43¢)
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where Ky, Mj;, and F; are the generalized stiffness matrix,
mass matrix, and force vector, respectively, and a; and by
are the generalized added-mass and damping matrices.
Truncating the serics in Eq. (42) at the appropriate term N,
and solving for g=0,1,2... Ny, we can determine the unknown
complex amplitudes corresponding to each mode (g, j).

The hydrodynamic force acting on a flexible disk can
be obtained by integrating the hydrodynamic pressure
over the disk area.

F=iop[” Jo 0" __drde (44)

Substituting Eq. (5) into the above equation and integrat-
ing with respect to 8, the hydrodynamic force can be
expressed in terms of diffraction and radiation parts.

F:FD+j§g0jFRj (45
where

Fp=2mpgf3 rgp~0p M- r

Fo=2mpgfaridp —0n - adr (46)

3. NUMERICAL RESULTS AND
DISCUSSIONS

In this section, the analytic solutions derived in the pre-
ceding sections are used to investigate the diffraction/radi-
ation wave field in the neighborhood of a submerged
circular flexible membrane for various design and wave
conditions. First,. the convergence of analytic solutions
with the number of natural modes (Ne, N,) for given N is
shown in Table 1 for a particular design condition. The
convergence is in general rapid with respect to the two
parameters. Through a senies of similar tests, it is con-
cluded that (Ne, N,)=(6,5) gives sufficient accuracy for the
cases presented here. Second, the convergence test of ana-
lytic solutions with the number of eigenfunctions N for
given {(Ne, N)=(6,5) is shown in Fig. 2. It is found that
N=15 is sufficient to give the reasonable results. In the
following, the analytic solutions with Ne=6, N=5, N=15
were used to investigate the wave deformation over a sub-
merged flexible circular disk for various design condi-
tions. The membrane mass per unit area used for these
numerical examples was 1.0 kg/m?.

Fig. 3 shows the diffracted wave amplitude normalized

Table 1. Convergence test resuits (ml/A) with the number of
natural modes {Na, N,) for &/h=0.2, a/h=0.5, N=15, T/
pgh=0.05 at 9=0, r=a

(a) kih=2.0
Ny
N 0 2 4 6 8
1 0.265130 (.825257 0.785191 0.785694 (.785691
3 0.255252 0.826043 0.783975 0786478 0.786475
5 0.265261 0.826065 0.783998 0.786501 0.786498
7 0.265262 0.826068 (0.786001 (.7863504 (.786501
(@) kh=2.0
Ny
N D 2 4 6 8
1 0450707 137881 123184 123726 123714
3 0451324 1.37953 123339 1.23876 1.23864
5 0451329 137958 123347 1.23884 123872
7 0451329 137959 1.23349 1.23885 [.23873
3
2]

InliA
‘\‘-..

kih

Fig. 2. Convergence of wave height at r=4,8=0 with the num-
ber of eigenfunctions for the case a/h=0.5, Tlpgh'=
0.05, drh=0.2.

by incident wave amplitude for a rigid (=infinite tension)
circular disk at three locations r=a, 8=0, ©/2,%. In this fig-
ure, the relative radius of the disk, af, is fixed at 0.5 and
three different relative submerged depths, &/%=0.1,0.2, and
0.3, are used. The present results are in good agreement
with the published data of Yu and Chwang (1993). It is
shown that the effects of disk on the diffracted wave field
increase as the submerged depth of disk decreases. When
8=0 and d/h=0.1, the water surface continues to rise in an
ascillatory manner as k& increases, which implies that the
shorter the wavelength, the more wave energy is focused
near the rear of the shallow disk. As kih approaches O
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k,h
@ T/mh’ =002
3
—— dm=D o
2
£
€
14
0
0 1 2 3 4 [ 6
k,h
&) T/ pgh® =005
3
—— dh=0.1
oo dfh=QL2
—— dm=03
24
%
£

{c) 6=nxn

Fig. 3. Vanation of wave height due to rigid disk as function of
non-dimensional submergence depth &/ and wave-
number ki for ah=0.5 at r=a.

(long wave limit), all curves converge toward 1, which
means that the incident wave field is not changed.

Figs. 4 and 5 show the variation of wave amplitude due
to the flexible disk for three different tensions and sub-
merged depths at r=a, 6=0, . When the tension is not
large, the membrane becomes flexible and the resulting
free-surface elevation is quite different from that of the
rigid-disk case. As the membrane tension increases, the
results become closer to the rigid-disk results. When the
non-dimensional tension is 0,02, very pronounced wave
focusing (three or four times the incident wave amplitude)
is possible in a very narrow frequency region. This is due
to the reinforcement of diffracted waves by motion-

k,h
() T/ pgh® =01

Fig. 4. Variation of wave height due to flexible disk as function
of non-dimensional submergence depth 4% and wave-

number kk for ah=0.5 at r=q, 8=0.

induced waves. The pattern of motion-induced waves is
closely dependent to the tension and submerged depth.
The effects of membrane motions are more pronounced as
the submergence depth is reduced and the flexibility
increases.

To investigate the effect of membrane tension more
clearly, the free-surface elevations at three different loca-
tions, r=a, 8=0, /2,1, are plotted in Fig, 6 for four differ-
ent tensions and the fixed value of d/h=02, a/h=0.5. In
these figures, solid lines denote the cases of infinity ten-
sion (or rigid disk). It is shown that the curves converge
toward the rigid-disk case, as membrane tension inc-
reases. Fig. 7 shows the effects of disk size for fixed sub-
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— a/=0.1

InirA

InlfA

In [FA

kb
() T/ pgh® =01
Fig. 5. Variation of wave height due to flexible disk as function

of non-dimensional submergence depth &/ and wave-
number ki for ah=0.5 at r=a, 6=t

mergence depth and tension. As the size increases, sharper
wave focusing occurs at lower frequencies. The shift of
focusing frequency is due to the change of modal res-
ponse frequencies.

In Figs. 8 and 9, dimensionless hydrodynamic forces on
the rigid and flexible disks are plotted as function of kik.
The forces on the flexible membrang is in genefal gieater
than those on the rigid disk due to additional hydrody-
namic loading induced by membrane motions. The peak-
force magnitude increases as submergence decreases. As
the wavenumber &k increases, the hydrodynamic loading
on a shallower flexible disk can be smaller, as shown in

Fig. 9. Fig. 10 shows the variation of dimensionless hy-

~——— T/pgh’=infinity
e Tipghtat02
—— Tipgh’=0.05
— - Tipgn?=0.1

[n 1A

(@ 8=0

—— Tipghl=intnity
coeeeees Tipght=r.02
—— Tipgh’=0.05
— - Tipgh'=0.1

[n /A

Kb
M) f=n/2

——— Tipgh’=infinity
-------- Tieghi=0.02
—-— Tipgh’=0.05
2 ] . —- Tipghi=0.1

In IFA

k.h
) f=nx
Fig. 6. Variation of wave height due to flexible disk as function

of non-dimensional tension T/pgh® and wavenumber
kh for e/h=0.5, dh=02 at r=a.

drodynamic forces with membrane tension for fixed &/
h=0.2, It is clearly seen that large tension cases approach
the rigid-disk limit and the peak magnitudes tend to be
higher and sharper as membrane flexibility increases. Fig.
11 describes the variation of dimensionless hydrodynamic
forces according to the change of disk size (ah=0.3, 0.4,
0.5) for dh=0.2, T/pgh?=0.05. It is shown that the peak
magnitude increases and the width of the peak decrease as
disk size increases. It shows the similar pattern as Fig. 10.
It can be explained that the larger the disk has an effect to
increase the flexibility of membrane.

Fig. 12 compares the deformation of incident wave
field around the rigid and flexible disks for &A=0.2, &/
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amh=04
Y N
—— ams08

k.h
) f=nx

. Variation of wave height due to flexible disk as function
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Fig. 12. Comparison of wave deformation (InliA) around submerged disks for d#=0.2, a/h=0.5 at kA=2.0.
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Fig. 13. Comparison of wave deformation (Il/A} around submerged disks for d/h=0.2, a/h=0.5 at kih=4.0.

focusing rate or locations can be varied by controlling
membrane flexibility. The wave focusing results from the

phase reinforcement between diffracted and motion-in-

h=0.5, kh=2.0. In these figures, we can observe wave
focusing near the rear of the disk, and the focusing rate is
greater in the case of flexible one, which shows that wave
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Fig. 14. Comparison of wave deformation {mMVA) around submerged flexible disks for d/#=0.1, a/%=0.5 at kh=2.0.
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Fig. 15. Comparison of wave deformation (mVA) around submerged flexible disks for d%=0.1, a/h=0.5 at kh=4.0.

duced waves. Fig. 13 shows similar comparison for larger peak, and its pattern becomes more complicated com-
water depth to wavelength ratio k/i=4. In this case, wave pared to the previous case.

focusing occurs at several locations instead of a single Fig. 14 shows another example of wave deformation by
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a flexible membrane with two different tensions for o/
h=(0.1, and kh=2. When the dimensionless tension is
(.01, the free surface above the membrane disk becomes
lower than the incident wave field as a result of phase can-
celiation. On the other hand, for higher tension (dimen-
sionless tension=0.02), the free-surface pattern becomes
totally different, and two pronounced peaks can be ob-
served. Fig. 15 shows how the free-surface pattern of Fig.
14 changes if the wavelength is halved. For dimensionless
tension=0.01, we again see depressions on the free surface
above the circular membrane. In the case of dimensionless
tension=0.02, four peaks are formed above the membrane
as a result of higher-mode membrane responses.

Various types of membrane responses are illustrated in
Fig. 16 for dfh=0.1, 0.2, kh=24.,6, and non-dimensional
tension=0.02. It is seen that various shapes of membrane
responses can be generated depending on wave and mem-
brane parameters. Particularly for shallower submerged
depth, many interesting patterns, such as two-peak, four-
peak, and sombrero shapes, are made. For each case, the
shape is determined by which mode is dominantly excited
by a given design condition. For illustration, the several

kh=6.0 kh=6.0

@d/h=01 by dih=02
Fig. 16. Comparison of dimensionless membrane responses (I5VA)
for Tipgh?=0.02, a/h=0.5.

{1,2)mode

Fig, 17. Comparison of dimensionless modal amplitudes (nor-
malized by incident wave amplitude) for Tpgh?=0.02, &/
h=0.1 a/f=05 at kA=2.0.

(1.1)mode

selected modal amplitudes of the case of Fig. 16(a) are
plotted in Fig. 17. It is seen that the (1,1)-mode is domi-
nant over other modes in this case, and therefore the

resulting response resembles this mode.

4. CONCLUDING REMARKS

The interaction of incident monochromatic waves with
a tensioned, flexible, circular membrane submerged hori-
zontally below the free surface is investigated in the frame
of three-dimensional linear hydro-elastic theory. The fluid
domain is divided into three regions, and the diffraction
and radiation potentials in each region are expressed by
the Fourier Bessel series. The displacement of circular
membrane is expanded with a set of natural functions,
which satisfy the membrane equation of motion and
boundary conditions. The unknown coefficients in each
region are determined from matching conditions. The
numerical result of infinite-tension case is in good agree-
ment with Yu and Chwang’s {1993) rigid-disk results.

It is found that the radiated waves generated by mem-
brane motions significantly affect the overall free-surface
pattern unless the membrane is deeply submerged or its
tension is very large. The tenston, radius, and submer-
gence depth of circular membrane are important design
parameters in determining phase reinforcement or cancel-
lation between diffracted waves and motion-induced

waves. The phase reinforcement results in wave focusing,
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as pointed out by Yu and Chwang (1993). The results
show that various types of wave focusing are possible for
given wave conditions by controlling the size, submer-
gence, and tension of membrane. The free-surface shapes
are significantly influenced by dominant membrane
modes and the effects increase as membrane flexibility
increases and submergence depth decreases. The results
also show that the hydrodynamic forces on the flexible
disks are generally larger than those on the rigid disks due
to the additienal loading induced by elastic motions,
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