Production of the Quality Germinated Brown Rices Containing High ${\gamma}$-Aminobutyric Acid by Chitosan Application

키토산처리에 의한 ${\gamma}$-Aminobutyric acid 고함유 우량 발아현미 생산

  • Published : 2000.12.01

Abstract

To obtain quality germinated brown rices containing high levels of ${\gamma}$-aminobutyric acid (GABA), chitosan was applied during the brown rice germination. The GABA contents in germinated brown rices (1,035 nmole/g fresh weight) and brown rices germinated by water (771 nmole/g fresh weight) or by lactiv acid (728 nmole/g fresh weight). In addition to the enhancement of GABA, germination in the chitosan solution increased alanine concentration and decreased glutamic acid, aspartic acid and serine concentrations in the brown rices. The activity of glutamate decarboxylase was also enhanced by the chitosan treatment. Furthermore, germination by chitosan reduced fungal contamination markdely, compared with germination by water or germination by lactic acid. These results suggest that quality germinated brown rices containing high levels of GABA can be obtained by chitosan application.

본 연구에서 현미의 발아에 키토산을 활용함으로써 곰팡이 발생을 억제하고 기능성 생리활성 물질인 GABA의 생성을 증진시 킬 수 있음을 확인하였다. 100 ppm 키토산액에서 72시간 발아 는 현미파우더 그램당 1,035 nmole의 GABA를 보유하게 되어, 발아되지 않은 현미의 136 nmole, 불침종 발아 현미의 771 nmole, 100 ppm 젖산침종 발아 현미의 728 nmole GABA에 비하여 높은 것으로 조사었다. 발아에 의한 GABA 생성증진과 더불어 알라년의 생성증진 및 글루탐산, 아스파틱산, 세련의 함량 감소가 뚜렸하였다. 키토산처리에 의한 GABA의 생성 증진은 GABA 생성에 관여하는 글루탐산 탈탄산효소의 활성증진이 기여한 것 으로 조사되었다. 키토산액에서의 침종 발아는 물침종 발아나 젖산침종 발아에 비하여 곰팡의 발생빈도를 현저하게 낮추었다. 이들결과를 종합할 때 발아현미 제조시 키토산액을 사용하면 기 능성 물질인 GABA 함량이 증진되고 곰팡이등의 잡균의 오염을 줄힐 수 있어 양질의 발아현미를 얻을 수 있을 것으로 기대된다.

Keywords

References

  1. Miraclulous Diets Brown Rice Cho, S.-H.;S.-C.Baek(Ed.)
  2. Proc. Korean Society of Rice Research Conference 1996 New Techniques for the Cultivation of Quality Rice, In Rediscovering Korea Rice and Development Direction Lee, M. H.;J.-C. Shin;L.-K. Park(ed.);J.-C. Shin(ed.)
  3. Food Processing v.31 Accumulation of γ-aminobutyric acid(GABA) in the rice germ Nakagawa, K.;A. Onota
  4. Receptor Pharmaclogy and Function GABA receptors Krogsgaard-Larsen, P.;M. Williams(Ed.);R. A. Glennon(Ed.);P.M.W.M.Timmermans(Ed.)
  5. Trends Neurosci. v.17 Bringing the cleft at GABA synapses in the brain Mody, I.;Y. Dekoninck;T. S. Otis;I. Soltesz
  6. FASEB J. v.13 Strategy for increasing gamma-aminobutyric acid in plants Oh, S.-H.;D. M. Roberts;H. Fromm
  7. Agric.Chem. Biotechnol. v.42 Regulation of γ-aminobutyric acid production in tobacco plants by expressing a mutant calmodulin gene Oh, S.-H.;Y. S. Cha
  8. J. Korean Soc. Agric. Chem. Biotechnol. v.43 Application effects of chitosan fertilizer on the growth of cabbage and GABA contents in the cabbage Oh, S.-H.;K.-W. Seo;D.-S. Choi;K.-S. Han
  9. J. Korean Soc. Food Sci. Nur. v.29 Investigation of γ-aminobutyric acid in Chinese cabbage and effects of the cabbage diets on lipid metabolism and liver function of rats administered with ethanol Cha, Y.-S.;S.-H.Oh
  10. What is Chitin · Chitosan? In Chitin · Chitosan: Basic and Pharmacology Kim, S.-K.;H.-Y. Lee(Ed.)
  11. Kor. J. Appl.. Microbial. Biotechnol. v.24 Effect of chitosan on the growth of Botryosphaeria dothideo, the casual fungus of apple white rot Lee, S.-J.;J.-Y. Uhm;Y.-H. Lee
  12. Agri. Biol. Chem. v.54 Chitinase activity in seeds coated with chitosan derivatives Hirano, S.;T. Yamamoto;M. Hayashi;T. Nishida;H. Inui
  13. Biochem. Biophys. Res. Commun. v.143 Chitin oligosaccharides as elictors of chitinase activity in melon plants Roby, D.;A. Gadelle;A. Toppan
  14. Agric. Chem. Biotechnol. v.42 Effects of various calmodulins on the activation of glutamate decarboxylase and nicotinamide adenine dinucleotide kinase isolated from tobacco plants Oh, S.-H.;S. J. Yun
  15. Plant Cell v.6 Analysis of a soluble calmodulin binding protein from fava bean roots: Identification of glutamate decarboxylase as a calmodulin-activated enzyme Ling, V.;W. A. Snedden;B. J. Shelp;S. M. Assmann
  16. Plant Physiol. v.108 Calcium/calmodulin activation of soybean glutamate decarboxylase Snedden, W. A.;T. Arazi;H. Fromm;B. J. Shelp
  17. Biochemistry v.24 Chemical synthesis and expression of a calmodulin gene designed for site-directed mutagenesis Roberts, D. M.;R. Crea;M. Malecha;G. Alvarado-Urbina;R. H. Chiarello;D. M. Watterson
  18. Anal. Biochem. v.72 A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein dye binding Bradford, M. M.
  19. Plant Sci. v.122 Changes in primary metabolism in connection with alkaloid biosynthesis in solanaceous cell suspension Marty, D.;F. Mesnard;F. Gillet-Manceau;M. A. Fliniaux;J. P. Monti
  20. Plant Physiol. v.115 The metabolism and functions of γ-aminobutyric acid Bown, A. W.;B. J. Shelp
  21. Plant Physiol. v.104 The synthesis of γ-aminobutyric acid in response to treatments reducing cytosolic pH Crawford, L. A.;A. W. Bown;K. E. Breitkreuz;F. C. Guinel
  22. Mol. Cells v.8 Cloning and characterization of a tobacco cDNA encoding calcium/calmodulin-dependent glutamate decarboxylase Yun, S. J.;S.-H. Oh
  23. J. Biol. Chem. v.271 Activation of a recombinant petunia glutamate decarboxylase by calcium/calmodulin or by a monclonal antibody which recognizes the calmodulin binding domain Snedden, W. A.;N. Koutsia;G. Baum;H. Fromm
  24. Plant Cell Physiol. v.36 Involvement of calcium and calmodulin in protein and amino acids metabolism in rice roots under anoxia Aurisano, N.;A. Bertani;R. Reggiani
  25. Korean. J. Food Sci. Technol. v.24 Changes in γ-aminobutyric acid(GABA) and the main constituents by treatment conditions and of anaerobically treated green tea leaves Chang, J. S.;B. S. Lee;Y. G. Kim
  26. Korean Soci. Crop Sci. v.43 Effect of anaerobic treatment on carbohydrate-hydrolytic enzyme activities and free amino acid contents in barly malt Yun, S. J.;K. G. Choi;J. K. Kim
  27. Trends Plant Sci. v.3 Calmodulin, calmodulin related proteins and plant response to the environment Snedden, W. A.;H. Fromm