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Passification of Nonlinear Systems via Dynamic
Output Feedback"

Young-lk Son, Hyungbo Shim and, Jin-Heon Seo

Abstract - The relative degree one and weakly minimum-phase conditions have been major obstacles for passification of the given system.
In this paper, a dynamic output feedback passifier which can remove the obstacles is presented. The proposed method does not require
any modification of the given output except just adding a new term. Therefore, the scheme is more suitable for output feedback

passification.

1. Introduction

Consider a smooth nonlinear system of the form

i

Ax) + g(x)u
= h(x) ()

(P:{*
y
where xe<R” is the state, » = R is the control input and
ye R is the output.
The system (1) is said to be C*-passive if there exists
a C* nonnegative real-valued function W(x), ¥0) =0,
such that Vx(0) = x, € R", Vi=0, the following dissi-
pation inequality(DI) holds:

VD) = Vi) < [ w0 de @)

It was shown in [2, Th. 4.10] that, under some mild
assumptions, the system (1) is globally state feedback
equivalent to a (°-passive system with a positive definite
storage function if and only if the system (1) has relative
degree one and is globally weakly minimum-phase. In
particular, the system is put into the global normal form

z = g2 + gz, )y (3)
y = blz,y) + alz,Vu

I

where a(z,y) is nonsingular for any (z,y) = R” and the
origin of 2z = ¢,(2) is stable with a Lyapunov function
Wz). Then, by a regular feedback
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u= —a (2, W0z + LWz )+ a (2 9r
(4)

the closed-loop system becomes passive from » to y.
(Indeed, it can be shown by taking derivative of a storage

function Wz) + % v’y.) Moreover, a solution to the

problem of passification via owutpur feedback has also
proposed in [5].

However, when the given system has the relative degree
greater than one or the system is not weakly min-
imum-phase, it is impossible to make the system passive by
a feedback because the condition, relative degree one and
weakly minimum-phase, is not only sufficient but also
necessary for feedback passification with the given output
function #(x) [2]. Therefore, the class of systems is
severely restricted to which the passification approach can
be applied.

To circumvent this structural obstacles many researches
including recursive step-by-step constructions in [10] have
been made recently (see also [8], [9] and references
therein). However, in those previous results only one of the
obstacles to feedback passification is concerned and the
given output /(x) is totally ignored. Moreover, because all
the existing methodologies are approached by the state
feedback, it seems almost impossible to apply them to the
output feedback passification.

The purpose of this paper is to study the methodology
which removes the obstacles to passification. The proposed
method is to construct a new system to be interconnected
parallel with the given system and to render the composite
system passive by a feedback law. Although the design of
the additional system is not an easy task in general, the
advantage of our method is that it does not require any
modification of the given output function #A(x) except
adding a new term. We utilize this advantage for the output
feedback passification inspired by Jiang and Hill [5].

Notations : A function is said to be C* when it is con-
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tinuously differentiable £ times, and a smooth function im-
plies C* function. V: R"— R is said to be positive def-
inite if 1(0) =0 and V(x) > 0 for all x=0, and proper
if, for any aeR, the set V[0, a]) ={xeR": 0
< Wx) < a} is compact. Lie derivative of a vector field
7 with respect to Vv is defined to be L, V(x) =dV(x)
- Ax) where &V(x) is the gradient of the function V.

Acronyms : CT = Coordinate Transformation; SISO =
Single-Input Single-Output; ZD = Zero Dynamics.

2. Main Idea

We are interested in the passification of the SISO system
(1) of which only the output v is available. When the giv-
en system (1) has relative degree one and is weakly
minimum-phase, the passification is achieved by state
feedback in [2] and by output feedback in [5], respectively.
A simple interpretation of the notion of relative degree o
is exactly equal to the number of times one has to
differentiate the output y(# at time ¢= ¢, in order to have

the value «(z,) of the input explicitly appearing [4]. To

deal with the case that relative degree is greater than one
or is not even well-defined, we specifically assume the
following,

Assmption 1. For the system (1), L (x) =0, VxeR".
By Assumption 1, the standard feedback passification is

not possible with the given y (see [2]). Instead, consider
a new SISO system (V) of the form

(M= k) + mDu, y,= Un (5)

where »eR’ and suppose the system has relative degree
one, that is, for the system (5)

L, +0, VpsR (6)

Then the parallel interconnection of two systems, (P) and
(V) (see Fig. 1), constitutes a new system of the form

[(?i) (i) ()

k() m(n)
v o= Wx)+ Ay

(7

which also has relative degree one by (6).

Now suppose the system (7) is put into the following
global normal form with a suitable CT [1],

z2 = q(2) + q1(z, )y, zeR™"!
(8)

y = bz, + alz, Vu

I

(v
+
y +
u —» (P) —
Fig. 1 Composite System
Since y= L(x) + Lyl(n) + L,knDu, alz, y) is the

(z, y)-coordinate expression of L, X7 and does not van-
ish by (6).

When the composite system is weakly minimum-phase
(i.e., there exists a C* positive definite and proper function
Wz), k=2, such that L WMz <0 VzeR" "),

the system can be rendered passive by output feedback
under the following assumptions. These results are adopted
from [5].

Assmption 2. There exist two smooth functions «,(z) > 0
and ay(y) so that a(z, y) = q(2)a)(y) for each pair
(z, v). Moreover, assume that the q,(y) is globally in-
vertible for all y e R.

Assmption 3. There exist two nonnegative functions ¢,
and ¢, such that, for all (z, y)

IL, Wz, ¥) + a, (2)b(z, y) +

o

ay 'z, Myl < g1l + (DL, W2 * (9)

Lo |—

Theorem 1. Under Assumptions 1-3, the system (7) is
rendered passive from » to y by the output feedback

u= a()gl(})( ”EK/ - ;’451(}) - }‘ﬁ%(;) + 7) (10)

with an arbitrary constant &> (0, provided that the ZD of
the system (7) are stable.

proof. By the analysts of the proof [5, Prop. 4.1], the time
derivative of a storage function V= W(z) + %af‘(z) }2

gets an inequality which leads to the passivity of the
closed-loop system (8) and (10) with the new input ».
Indeed,

e, ) = LW+ L W+ 2+ a (20 +a (2D3b+ a(Da3)u)

0 12 o

]

L, W+ }(Lq w+ L o v+ a(l(z)b) + vay(Nu

an

With the inequality (9), the application of output feedback
(10) and Schwarz's inequality give the following ine-
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qualities.

_ o Lo -
Wz, ) < L, W+ DeDIL, WI* — [W85() — e ¥’ + yr

IS PR

(12)
This completes the proof. ]

Thus the overall controller is composed of the dynamic
part of (5) and the regular feedback (10).

Remark 1. Once the given system is passified by a
feedback, a simple additional feedback of the output
renders the system asymptotically stable under detectability
condition (see e.g. [10]). If the system is rendered (state)
strictly passive with positive definite storage function, the
additional feedback is no more required [6, Lemma 10.6].
If the system (7) is globally minimum phase, the system is
also globally asymptotically stabilized by (10) with ¢ > 0
and » = 0. That is, the system is asymptotically stabilized
as well as passified by output feedback only.

3. A Closer Look in Special Cases

In this section the main idea is looked into more closely
for two specialized systems. One is the system which has
the input vector field g(x) = Gy + B and a linear system
is the other. Moreover, m(7) and [(7) in the system (5)
are supposed to be m(p) =M=[10-0]" and
n)=Ln=1[10--019= 5, respectively. For these
special cases, Assumption 2 and the relative degree
condition (6) are always satisfied and Assumption 3 is
relaxed in some sense. Furthermore, we provide an explict
form of CT to global normal form.

A. Special Nonlinear System Case
Consider the following interconnected system

[ x [ Ax) Gx + B
m| = k(| + 1 u
'7];2’ ky( ) 0 (13)
y = hx+mn

where xe=R", p,eR and 5, = R’"'. Suppose the x-
dynamics of (13) satisfy Assumption 1.

x x
By a pre-CT, |7 | - ||, the above system (13)
72 72
becomes
x = Ax)+ (Gx+ Bu
(Cl:{y = k(y— hx), m) + Lix) + u (14)
7= k(y— W), 79

Since the vector field (Grx + B) is complete and the
system (14) has relative degree one, Proposition 9.1.1 in [4]
can be applied in order to find a suitable CT which
transforms (14) into global normal form.

Remark 2. The proposed CT in [4, Prop. 9.1.1] charac-
terizes the ZD submanifold of order #»+p—1 which, in
general, is not diffeomorphic to R"*?"'. (See Remark
9.1.1 in [4].) However, since we took m(7) = [10--0]7
and {(») = 5, our ZD submanifold is diffeomorphic to
R77?"!' That is, we can take n+ p—1 coordinate func-
tions out of # -+ p elements proposed in [4, Prop. 9.1.1].

Gx +
In fact, by letting x= 1 B], the CT is the flow
0
x + f (Gx(r) + B)dr
X il
0%yl = v—y . In the CT, the
72 72

second element of new coordinate is always zero, which is
ignored.

Under Assumption 1, the proposed CT is?)

I

- -3 . -y
e'(""x+(f“ e(’rdr)-B=x+<fO e(’rdr)(Gxﬁ-B)
72

y+ g

e ln
[

with the inverse : x = ¢ ©’& + (Lyec’dr) - B. Using this

CT, the system (13) is rewritten as the following normal
form

&= qn(& 2 +aulé z 3y
z = qoz(_tf, 2) + qp& 2z, ¥y (15)
y = k(y, &2+ Lhy, &+ u

of which the ZD are

E = RE —~ (GE+ Bk (—~18&, 2 + LME) =qq(& 2
z = hk(—h&,2 =gqp(& 2)
(16)

We should note that the input vector field of system (15)
is one and this implies the Assumption 2 is satisfied.

Corollary 1. Suppose there exist %, and k&, such that the

system (15) is globally weakly minimum-phase. Moreover,
assume that there exist two nonnegative functions ¢, and

#, such that, for all (¢ z, )

2) With the help of % Ol(x) Rx) + —g‘l; @l(x) =0 where @’;(x)

is flow of x = f(x) (see [6, p.96. Ex.2.46]), the input z does not
appear in (&, z) -dynamics at our desire.
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_ N _ 1

|Li+ L, WE 2, 9| < ¢y(2, )y + sz, ML, WE I E,

where g, = [¢f ¢]” and g, = [¢], ¢3,17. Then,

global output feedback passification of the system (15) is
achieved.

proof- By applying the following output feedback law
u= —ey— y$(z, ¥) — y¢i(z, v) + r (17)

with an arbitrary constant & > 0, the closed-loop system
(15)<(17) is rendered passive from » to y. It can be
shown by taking the time derivative of a storage function
We 2+ 3 5 O

Comparing with Assumption 3, we can see that these
é.(2, ), ¢,(z, y) contain z in Corollary 1. Thus these
are some milder than the functions ¢,(y), ¢.(3) in
Assumption 3.

The second special case is linear system.

B. Linear System Case
Consider a linear SISO system
x= Fx+ Gu, y= Hx (18)
of which HG = (. Thus, Assumption 1 is satisfied.

In the linear system case, Assumptions 2-3 are satistied
automatically when the system has relative degree one and
is minimum phase. This implies that the output feedback
passification is always possible for such linear system. (See
[3, Remark 4.1].) Therefore, in the linear system case, if
we construct an additional linear system such that the
interconnected system has relative degree one and is
minimum phase, the output feedback passification problem
is solved.

For a new SISO linear system of the form

n=Kng+ Mu, y,= L7, (19)
we suppose M= [1 0 -+ 017 and L =110 -- 0] with-
out loss of generality.?)

The parallel interconnection with (18) and (19) consti-
tutes the following linear system

‘ x F 0 0\yx G

m| = [0 Ky Kp||m +{1 u

cy: |17 0 Koo Ko/ \m 0 (20)
}/ = Hx+ m

Having a relative degree one, the composite system (20) is

3) This is obtained by a similarity transformation.

& I-GH -G 0](=x
transformed, by a CT of | y| = [ H I 0l|m|, to
z 0 0 Ilim
the normal form of which the ZD are
5): F— GHF + GK H —GKypl/(é&
(2 [ _KZIH K22 ](2) (21)

Finally, if we find a matrix K = [‘g“ glz] such that

2] 22
the system matrix of (21) is Hurwitz, then the problem of
output passification is solved.

4. An Example

Because the “passivity'” has been widely used to analyze
stability of a general class of interconnected nonlinear
systems (see, e.g., [10]), we apply the proposed method-
ology to the stabilization of a system. We can see that the
result is related to the low-order dynamic output stabilizing
controller problem for nonlinear systems. As mentioned in
Remark 1, the passification and stabilization of the
following system is achieved at the same time via dynamic
output feedback.

Consider a nonlinear SISO system of the form

Jél - X1 —2x2+x3+ u
(P,):{xy = 0.5sinx; + x3 ., v=1x, (22)
.7&3 = _2?62 + u

Since the system (22) has relative degree 2, (22) satisfies
Assumption 1.

If a SISO system (V,): 7= u,
parallel to the system (22), the composite system has
relative degree one. The new output y = y + p. Thus, by
the CT proposed in the previous section

v, = p is connected

£ 100 —1] (x
& 1001 0| x
% 001"1 {3,
3 000 1113

the following normal form# is obtained.

& — £ — 2& — 0.5sin&, ~1 0

52 — 0.5 Singg + E3 1 N 0

el T |—28 - 05sing - g T 17T o™

} 0.5siné&y + & 1 1
(23)

Moreover, with a Lyapunov function

4) Note that z, = x, = .
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(l) 7,025 2,2% ] &, it can be shown that the
—12.25 4.25

above system (23) has asymptotically stable ZD and
satisfies Assumptions 2-3. Hence, by the following dynamic
output feedback controtler

-1

u=aly, ) = —5y— 0.5siny — 2y + 7, 24

the strict passivity of the closed-loop system (22) and (24)
from » to y is obtained. In addition, the closed-loop
system is globally asymptotically stable with » = (. This
is illustrated by the following simulation result (Fig. 2). In
the simulation, an initial state [1 z1 1]7 is used.

5. Conclusion

The problem of passification via dynamic output
feedback is studied for nonlinear systems which do not
satisfy the condition of relative degree one and weakly
minimum-phase. The proposed methodology does not
search for a new output as in [8] or [10], but makes a
parallel interconnection with a new system to be designed.
Therefore, the composite system's output is just the sum of
the given output and an additional term. This gives some

(b) Control Input

Fig. 2 Simulation Result

advantages for the owtpur feedback passification. Under
some conditions as in [5], the dynamic output feedback
passification is achieved.

Further research should be performed for a systematic
construction of the additional system which renders the
whole system has relative degree one and is weakly
minimum-phase.
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