웨이브릿 변환 및 M-채널 서브밴드 QMF 필터뱅크를 이용한 적응 능동잡음제거 모델

An Adaptive Active Noise Cancelling Model Using Wavelet Transform and M-channel Subband QMF Filter Banks

  • 허영대 (포항 제 1대학 전산정보처리과) ;
  • 권기룡 (부산 외국어대학교 전자공학과) ;
  • 문광석 (부경대학교 전자정보통신공학부)
  • 발행 : 2000.01.01

초록

본 논문에서는 적응필터를 기반으로 한 웨이브릿 변환 및 서브밴드 필터뱅크를 사용한 능동잡음제거의 모델을 제안한다. 분해 필터뱅크는 입력 및 오차신호를 저주파 및 고주파영역의 QMF 필터뱅크로 분해하며, 각 필터뱅크 에는 dyadic tree 구조를 갖는 웨이브릿 필터를 사용한다. 분해된 입력 및 오차신호는 filtered-X LMS 알고리듬를 사용하여 각 서브밴드의 적응 필터계수를 새롭게 갱신시킨다. 합성 필터뱅크는 그리고 각 서브밴드의 적응필터 출력신호를 합성한 후 완전복원이 되는 광대역의 출력신호를 만든다. 분해 및 합성 필터뱅크는 완전복원을 위하여 공액직교필터를 사용한다. 또한 오차경로의 전달특성을 온라인 추정하기 위한 지연 LMS 알고리듬 모델은 이득과 시간지연인자만을 사용한다. 따라서 제안한 적응 능동잡음제거 모델은 웨이브릿 서브밴드 필터뱅크를 사용하여 계산량과 수렴속도에 유리한 시스템이 되도록 제시한다.

This paper presents an active noise cancelling model using wavelet transform and subband filter banks based on adaptive filter. The analysis filter banks decompose input and error signals into QMF filter banks of lowpass and highpass bands. Each filter bank uses wavelet filter with dyadic tree structure. The decomposed input and error signals are iterated by adaptive filter coefficients of each subband using filtered-X LMS algorithm. The synthesis filter banks make output signal of wideband with perfect reconstruction to prepare adaptive filter output signals of each subband. The analysis and synthesis niter hants use conjugate quadrature filters for Pefect reconstruction. Also, The delayed LMS algorithm model for on-line identification of error path transfer characteristics is used gain and acoustic time delay factors. The proposed adaptive active noise cancelling modelis suggested by system retaining the computational and convergence speed advantage using wavelet subband filter banks.

키워드

참고문헌

  1. Jour. of Acous. Soc. of Amer. v.85 no.2 Use of random noise for on-line transducer modeling in an adaptive active attenuation system L. J. Eriksson;M. C. Allie
  2. Jour. of Sound and Vibration v.141 no.3 The Influence of transducer transfer functions and acoustics time delay in active noise control systems S. D. Snyder;C. H. Hansen
  3. Mulirate digital signal processing N. J. Fliege
  4. IEEE Trans. on Signal Processing v.42 no.1 Near-perfect reconstruction pseudo-QMF banks t. Q. Nguyen
  5. Mulirate digital signal processing R. E. Crochiere;L. R. Rabiner
  6. IEEE Proc. v.78 Multirate digital filters, filter banks, polyphase networks, and applications : Atutorial P. P. Vaidyanathan
  7. IEEE Trans. on Signal Processing v.41 no.1 A spectral factorization approach to pseudo-QMF design Near-perfect-reconstruction pseudo-PMF banks R. D. Koilpillai;P. P. Vaidyanathan
  8. IEEE Trans. on Signal. Processing v.40 no.9 Wavelets and filter banks : theory and design M. Vetterli;C. Herley
  9. Geophysics v.47 no.2 Wave propagation and sampling theory I, II J. Morlet;G. Arens;I. Fourge;D. Giarg
  10. Comm. Pure Applied Math v.41 no.7 Orthonormal basis of compactly supported wavelets I. Daubechies
  11. IEEE Trans. on Pattern Analysis and Machine Intelligence v.11 no.7 A theory for multiresolution signal decomposition : the wavelets representation S. G. Mallat
  12. Signal Processing Theories and Applications Wavelet transform based adaptive filtering N. Drdol;F. Basbug
  13. IEEE Trans. on Signal Processing v.43 no.8 A delayless subband adaptive filter architecture D. R. Morgan;J. C. Thi
  14. Subband and Wavelets Transforms Acoustic echo cancellation using subband adaptive filtering P. L. De Leon;D. M. Etter