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ABSTRACT: This paper proposes a longterm prediction of gffshore structures in ocean waves. All shorvterm statistics is generated by
the simulation for all the combinations of significamt wave heights and spectral peak periods. The simulation has been ftested first on
linear system, whose analytic solution is known, to verify If the simulanon works accurately. Then the scheme was applied 1o the
nonlinear system. This paper demonstrated that the proposed scheme could be an efficient tool in estimating the response of offshore

Structures.
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1. introduction

In designing offshore structures, the extreme responses of the
structure  due to occan waves have to be comsidered. The
long-term  prediction  has  been  studied by  many
researchers(Hoffman and Walden, 1977), (Ochi, 1978), (Haver,
1985). Their approach can be summarized as follows. The
prediction of responses of offshore structures is generally made in
regular waves. The regular wave responses must be then translated
to tesponses in the presence of random ocean waves. The short
term and long term response analyses are essential to get the
accurate estimation of the design load of the waves. The short
term responses comesponds to a few hours while the long-term
responses are obtained based on the anticipated life of the
structure, But the long-term response predictions are usually based
on only a few years of wave data. We need to extend the few
vears of time of extreme responses to the life time of the
structure.

In this paper, the author proposes a long-ferm prediction
scheme which is applicable in the filed of ocean engineering. The
basic idea of the proposed scheme is that the simulation of the
responses of the structure is performed for ali combinations of
significant wave heights and spectral peak periods in the given
data.  This the
computation power of computer makes this tremendous amount of

wave paper demomstrates  that increasing

computation possible.
2. Wave Data

In order to estimate the long-term probability of responses of
offshore structures, first of all, the long-term distribution of waves
must be known. The data used in this study is adopted from
Haver(Haver 1985). Haver made a 3-year observation on the
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Northem North Sea in order to produce wave daa and presented
a tabulation in terms of the number of cbservations for each pair
and spectral peak wave period
combination. The measurement was achieved by using a surface

of significant wave height

following wave rider buoy. The probability of occurrence of a
particular pair can be determined from the fraction of its number
of observations to the total number of observations. Table 1
represents joint frequency table of Hg and 75

The joint probability density function can be written in terms of

Hgand T'p as follows
Fur kb, ) = fulh)  Frult | A) (1)

where h,t represents a significant wave height amd peak period of
H, and Tp
significant wave height and spectral peak period. #4 (&) is the

wave, Iespectively. are random variables for

probability density function of significant wave height and

Fro gL h) tepresents the conditional probability density function
of Ty given 4, The joint probability density function for £,
and 7's can be obtained by fitting the dats from the wave data.
i (#) can be approximated by the following functiomal form

f [v—zim ol LB o,
Fadwy =1 T o (2)
A Iy

where 1 and o° represents the memn and variance of In# 5
Fu (B is modelled by a log
normal  disiribution for Hg<{p and is modelled by a Weibull
Haver

respectively We can notice that
distribution for g % proposed the values of ihe
parameter as  7=3.27m, A=0.836, 2°=0376, p=2.822, and §
=1.547 .
wave data shown in Table 1. The conditional joint probability

These values are good approximations for the given
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Table 1| Joint frequency data

Tp 40 50 60 70 8.0 90 o0 iL0 120 13 140 150 1e0 1700 1800 190 200 Sum

Hs 40 50 6.0 7.0 80 9¢ 10,0 110 120 13D 140 150 160 170  1BO 190 200
053 1 3 12 17 10 12 5 5] E| 1 1 71
0.5-10 16 68 121 133 96 91 78 38 24 & 2 1 1 577
1015 6 a3 151 170 226 171 156 79 67 41 17 4 2 1 1154
1.5-2,0 11 127 230 227 186 168 113 - 64 45 17 3 1 2 1 1 1277
2025 2 41 146 216 202 146 128 68 50 33 31 10 5 1 1 1 2 1083
2.5-3.0 1 63 184 204 118 94 106 73 45 29 19 G 4 2 1 966
3.0-3.5 22 92 207 120 102 81 71 47 33 19 6 3 503
3540 3 44 162 119 92 57 74 40 22 14 B 3 1 644
40-4 5 16 103 114 75 60 43 18 18 i0 5 5 467
4.5-5.0 1 K| 44 76 43 51 20 27 9 10 10 8 2 515
50-55 18 60 69 50 23 13 10 5 4 4 1 257
5.5-6,0 1 5 32 40 31 i7 10 13 3 6 4 4 169
60-63 6 28 21 22 & 10 2 4 2 2 2 I 106
53-70 2 20 18 21 14 2 4 81
T0-75 3 9 15 13 3 1 1 1 46
7380 8 12 4 3 3 30
80-8.5 3 5 1 4 5 3 31
835.90 3 3 4 4 1 15
5.0-8.5 1 4 2 3 1 1 12
2.3-10,0 3 1 4
10.0-10.3 1 1
10,3-11.0 1 1 1 3
Sum 23 147 463 o6 1115 1408 1201 936 743 583 348 216 113 58 3R 14 5 5 8212

density function of Hg and Tp can be approximated by the log

normal distibution as shown below

oAz
Framlt| k)= mem —J]HT:SEEL (3

where p is the mean of In7p and ¢° is the varance of

InTp . p and ¢* are estimated from the sample for each case

of significant wave height. The smoothed estimates are given
below

p=159+0.42In{k+2) (4)

#5 = 0.0054+0.085exp (—0.134%) (3

3. Equation of Motion

If the influence of all other degrees of freedom can be

neglected, the equation of motion of a ship or an offshoe
structure in random waves can be written in the following form

x+ Dx) + Flx) = NM§ ()]

where x is the displacement of response, [ represents the
nonlinear damping function, /R represenis a restoring function,
and M2 is a Gaussian mndom process with zero mean with
spectrum  Sp{w). M) is a non-white noise. The damping and

restoring can be represented as

Rlx) = rx + 7y (N

Dx)=d +dyl 2| % (8)

In this siudy the excitation term N(#) is obtained by
introducing the fransfer function as

Silw) = | Hyplw) | 25,{w) 9
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where 7(# represemts the wave height, S () is the wave
spectrum, Hy{w) is the wansfer function from w1 to
excitation MN({). It can be written

Hola) = L (a0)

(cy — 1@ + 1ca

where ¢, ¢y and ¢, are arbitrary constants, and @ is the
angular frequency. The Fierson-Moskowitz spectrum is used for

S{w) in the following form
S,( 750;1:0_’{ —1.35(% o (11)
o) =56 oz exo [ 1255} ]

where @, is a peak frequency, and o represents the Oth

moment of a wave spectrum. It can be written as

= [ Sia)d (12)

4. Long-term Prediction

For long term predicion vadous conditions of ocean is
essentially requited. In processing the lopg-term prediction, the
short term distributions are first computed. The response amplitude
can be expressed as follows

Fyin=1- exp[—(-c‘:'a:)&} {13}
where y is the random' varable and represents the response

amplitude. F,.(y) is the comulative distribution function of

response  amplitude  calculated  from  simulation. ¢ can be

calculated from the time history of tesponse. The mean zero
upcrossing frequency can be obtained from the following equation

! m;;?) :

T e 14

=) (14
where i is the nh momept of mesponse spectrum. The

specific form of the Oth and 2nd moment can be written as

)

mf =, o (15)
= A% = f_m_ﬁmxz Flx, x) dedx

m$ = ot o (16)
= Eix= fimf_miczfx(:f, x) dydx

The long-term distribution of response amplitude can be written

as

Fri = == [ [vian %)

T
Yoo

. F'quH,‘ v | . AF gr,lh, O dhde

where v, is the long-term mean frequency of zero-uperossing,

ie.
Via= [ [ vioh 07 prlh, b dhat (18)

The long-term cumulative distribution function can be obtained by
substituting eq(13} and eq(14) into eq(17). Since the response
process are assumed to be Gaussian, the long-term response cam
be obtained from the following equation

L= Fr(n) =
#

where #, represents the expected number of observations for the
N years,

5. Simulation

The conventional way of performing simulation is to sum up
cosine series in which the phase is randomly chosen. That is

Ng(#) = ;Alcos(waf— 8.} 20)

where 4, is the random number which is distributed uniformly
from 0 to 2x(Shinizuka, 1991, Yang, 1986}, The mean and
variance of Ng(/) can be represented as

ELN(D] = 34 A, Floos(wit—6)] =10 @
E[Ns(H?]
— E{Z‘Axcos(a)lt" 5,)}Z;A;cos(w,i— 6,)] {22)
=3 %Ag

The variance of excitation N(#) can be calculated from the Oth
moment of the spectrum as follows

o= J;mZS(w)dw= 2‘25(59,)[1&) 23)

From eq(22) and eq(23) the relation between /A, and spectrum
Si{w) can be obtained

A, = V1S w)dw (24)

The expression for the simulation Ng({) can be obtained by
substituting eq(24} into eq(20}

Ne(f) = Z‘v 4S8 w) dw + cos{ai— 0,) (25)

6. Numerical Results and Discussion
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The wave spectrum, transfer function, and exciting spectrum are
shown in Fig. 1. The dashed line is the typical wave spectrum
when the significant wave height corresponds to 1.75m and peak
period is 8.5 seconds. Dashed line and dotted line is the transfer
finction as ¢, = ¢y =y =1, and solid line is the exciting
spectrum,

The time history of numerical simulation of the excitation is
shown in Fig.2. Fig.3 shows the auto-correlation fimction of this
ime history, The shape of the auto-cormelatiom fimction proves
that there is no perodicity in the simulation. The target spectrum
and simulated spectrum are plotted in Fig4 to check the accuracy
of the simulation. They are in good agreement with each other.
The probability density function of the significant wave height is
shown in Fig.5. The solid circle is calculated from the scaiter
diagram and solid line represents the calculated results from
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eq(2). The conditional probability density function of 7, for
given values of Mg is shown in Fig.6. The rectangle, ciicle and
triangle Tepresent probability density function calculated from the
Table 1, and solid, dashed, and dotted line show the shapes
calculated from eq.(3). The typical significant wave heights 0.75m,
1.'75m, and 2.75m are used,
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Fig. 4 Comparison of Exciting Spectrums between the Given
Simulated Spectrum
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Fig. 5 Probability Density Function of Significant Wave Height

a4z
B Scatter Dvagram {Hs = 0 75)
& Scaller Dlagam (Hs = 175}
4 & Scalter Diagram (Hs = 275}
—— Fitirg (Hs =0 75)
- - - Fittrg (Hs = 175
= == Fiting (Hs = 2 75)

Probaility Density Funation
=

Peak Period (Tp)

Fig. 6 Probability Density Fimctions of Peak Period



On Long-term Prediction Scheme in Ocsan Engmeering 33

In this study, we consider a linear system whose analytic
solution is known to check the accuracy of the simulation. The
linear systern we consider is

rtdx+ = ND (26)

where d and 1 represent damping and restoring coefficients,
tespectively. The analytic expression of the varance of the
response for the given linear system can be written as

¢ = [ IH ()P Siw) do 27
where H;(w) is the frequency response function of eq.(26). The
functional form of the H; (w) is

_ 1
Hi(w) (r— ) + idw
The unii valves are used for the binear coefficients of the
equatdon of motion. The computational results for 100 year retum
period of simulation and analytic results are shown in Table 2.
The comparison shows that siroulation is very accurate.

Table 2 Comparison of analytic solution and simlation for 100
year Teturn period

analytic solution simulation

extream value 10.3348 10,3671

The variances of simulated response are shown in Fig7 and
Fip.8 These variances are caleulated from 20000 samples. The
total cpu time for the caleulation took approximately 20 hours on
pentiumIlI 450 MHz computer.
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Fig. 7 Variances of Response Displacement

The values of the coefficients used are o, =1, d =10.5,
¥y =1 and »=10.5. Fig® shows the cumulative distributicn

function of the response by the long-tenn prediction. The
long-term pediction of the structure is shown in Table3.
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Table 3 lTongterm prediction of responses fo varous retum

periads
return, period exgeme valug
10 year 3.6830
20 year 3.8874
50 year 41782
100 year 43643

The computational tesults for other systems of equations are
listed in Table 4. These values are the long-term respomses for
100 year return period.

Table 4 Long-term tesponses for 100 year return period

ds 7y extreme value
0.1 0.1 6.367
0.3 0.3 4.923
0.5 03 4.365
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7. Conclusions

The long-term prediction scheme was proposed in this paper.
The short-term statistics for ali the combinations of significant
wave heights and spectral peak periods were penerated by
simulation. ‘The computational power of computer made this huge
amount of calcufation possible. These are extended to the whole
life time of the structure,
tested on the linear system whose analytic solution could be
known in advance. The results show good agreement with each
other. Then the scheme was tested on nonlinear systems. This
paper demonstrated that the proposed scheme can be an efficient
100l for estimating responses of structures in the ocean wave.

The accuracy of the simulation was
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