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ABSTRACT

We investigated into the minimum distance of a primitive binary cyclic code C with a generator polynomial

g(x)=m (x)m «Lx). It is known that the necessary and sufficient condition for C to have minimum distance five

is the fact that x?is an APN power function. In this paper, we derive the new proof of minimum distance for

the primitive binary cyclic codes with minimum distance five.

I. INTRODUCTION

Finding the true minimum distance of a binary
cyclic code with a given generator polynomial has
long been studied since the notion of cyclic codes
were brooded. Several lower bounds on the
minimum distance of a cyclic code are known.
The oldest one is BCH bound [1] and this BCH
bound has been improved by Hartmann and
Tzeng [2], Roos [3], and van Lint and Wilson
[4].

Binary cyclic codes with small minimum
distance has also been studied. Charpin, et. al. [5]
studied the case of minimum distance 3 and
Charpin, et. al. [6] and van Lint and Wilson [8]
studied the case of minimum. It is known that

the necessary and sufficient condition for C to
have minimum distance five is the fact that »? is
an APN power function [7].

In this paper, we derive the another proof of
minimum distance for a primitive binary cyclic
code to have minimum distance 5. In section II,
the notion of almost perfect nonlinear(APN)
power function is reviewed. The proof of
minimum distance for the cyclic code is derived

in section III.

I. PRELIMINARIES

Let GF(2™) be a finite field with 2™ elements
and @ be a primitive element. Let m (x) be the

minimal polynomial of the element o’ over
GF(2). A primitive binary cyclic code is the one
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whose length is 2™—1 and the generator
polynomial g(x) is given by g(x)=glm A2,

where each element in 7 belongs to distinct
cyclotomic cosets.

In this paper, we are concentrating on the
minimum distance property of the primitive cyclic
code of the case when g(x)= m(x)m x). In
the forthcoming discussions, the notion of APN
property of a function plays an important role so
that we will review the APN property.

Definition 1 : A mapping F from GF(p»™) to
GF(p™ is called APN if each equation

Ft+a)—F)=b

has at most two solutions ¢ in GF(»™) for any
a in GF(p™" and b in GF(»™). o

APN power functions on GF(2™ were
originally studied for applications in cryptology.
See Beth and Ding [9], Helleseth, Rong and
Sandberg [10], Nyberg [11], and Dobbertin {12].
All the known APN power functions x? on
GF(2™) are listed in [12].

When m is odd, all the APN power functions
are one-to-one mappings and when m is even,
they are all three-to-one. Following lemma shows
that the APN power functions are either
one-to-one or three-to- one.

Lemma 2 : If ¢
on GF(2™), then (2™-1,d)=1 or 3.

Proof : Manifest by considering the equation
x4+ (x+1) ‘=0 o

is an APN power function

Let C be a binary cyclic code with length
2”—1 whose generator polynomial g(x) is given
by gx)=m(x)mx). From the following
lemma, we can easily see that the code C has
no codewords of weight 3 or 4, if x? is an APN
power function on GF(2™).

Lemma 3 : Let C be a binary cyclic code of

length 27—1 with a generator polynomial
g)=m(x)mfx). ¥ x? is an APN power
function over GF(2™), then the minimum
distance of C is at least 5.

Proof : Since the code C is a subset of a
Hamming code whose generator polynomial is
m(x), it is enough to show the nonexistence of
codewords of weight 3 and 4. The nonexistence
of codewords of weight 3 and 4 can be directly
shown from the APN property of x? The
existence of a codeword of weight 3 implies that
the following equation

29+ (x+1)%=1 1)

has a solution other than x=0 or 1. But this is
impossible since (1) has exactly 2 solutions, x=(
and 1 from the APN property of x¢ The
nonexistence of a codeword of weight 4 is also
straightforward. If C has a codeword of weight
xty+z=1 and
27+ y?+2'=1 has a common solution (x,y,2)
such that x#y+z+x and x,y,z&{0,1}. Thus, the
solution must satisfy

4, then two equations

2 (x+x+ D=3+ (y+ x4+ 1% @

But, since x“ is an APN function, (2) implies
either x=y ory=1, which violate the condition

above. D

Naturally, the next question is whether the
minimum distance of the above code is 5. The
answer is yes and it is stated as the main
theorem.

. NEW PROOF OF THE MINIMUM
DISTANCE

It is known that the necessary and sufficient
condition for C to have minimum distance five is
the fact that x¢ is an APN power function as
given in the following theorem [7].

Theorem 4 : Let C be a binary cyclic code
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of length 2™—1, with a generator polynomial
g(x)=m (X)m Lx). If and only if x? is an APN
power function, then the minimum distance of C

is 5. o

In this paper, we derive the new proof of the
above theorem. Due to Lemma 3, it is enough to
show the existence of a codeword of weight 5.
From Lemma 2, there are two cases ond, the
case when (4,2™—1)=1 and (4,2"—-1)=3. Now
consider the case when (d,27—1)=1 first. Let

us define a set A, for ue GF(2™)" as
A=+ (x+ 0+ A+ wxeGF2™}. (3)

Since 1"+ (x+ '+ (1 +w¢ = wf(£)"+

(uil)d}+(1+u)", the set A, can also be

written as
A=uA+ 1+ 04, @

The existence of a codeword of weight 5

implies that two equations
x+y+z+w=1 (&)
and
xd+yd+zd+ w’=1 ©)

has a common solution (x,y,2,w) such that
x,v,2z,w are all distinct and x,y,z, we{0,1}. Thus
the solution must satisfy

2y + 2+ (et y+z+ D=1, )

In (7), set y=x+0v and divide (7) by ¢ then

we have

R IE AT

By setting u=1+—}), we can say that (8)

implies that two sets A; and A, have some
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common elements under the condition that
x,y,z,we{0,1}, are all distinct. The following

lemma summarizes this discussion.

Lemma 5 : If C has no codewords of weight
5, then for any u(=+1) in GF(2™)",

ANA,={1,u%+1+0%. ®

Proof : The two sets A, and A, can be

written as follows:
A ={x+(x+1)? |2 GF(2 ™)} (10)
A= {y+(y+w + A+ lyeGF(2 ™). amn

Certainly, x=1 in (10) and y=1 in (11) yield
the element 1, and x=# in (10) and y=0 in
(11) yield the element #«“+(1+#)? in A,NA,.
If there is some other element s in A,NA,,

then we can write

s=x%+(x+ D %=y 4+ G+ 4+ Q+w <. (12)

The equation (12) implies the existence of a
codeword of weight 5 if x% (x+1)% %
(y+w?9 and (1+2)? are all distinct and none
of them are zero. But, it is easy to show that if
any two of the above 5 elements are the same,

then the resulting s is either 1 or w“+(1+)%
a

Since the cardinality of A, is 2™—1 for any
u, Lemma 5 tells us that only two elements in
GF(2™) are missing in A,NA,. Now let us call
these two elements as m(#) and m,(w). Then

we have the following lemma.

Lemma 6 : Let C have no codewords of
weight 5. If (1+2)‘eA,, then {m (), my(2)}=

d
(U+2 %1+« and if (1+—i) €A,, then

(m (), mx)} = 10,1+ a?+(1+w)}.

Proof : Since g z=0, it is easy to see that
Z€A,

mlw)+my(w)=1+u’+1+w? From (10),
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Thus from (4), (1+w)%=A, Therefore, if
(1+#)“2A,, then (l+u)%2A,nA, which
implies that one of m,(u) and my(a) is (14 )%

in turn, the other is 1+« Similarly, if
d d
(1+ 1) eA,, then u"(1+ 1)

4 . d .

” " +(1+w0¢=0
@A, Thus, 0e A NA,, which tells us that one of
m(w) and m,(z) is 0, and consequently, the

other is 1+« +(1+w% o

Since the  sets {(1+0%1+%% and
0,1+ %%+ (1+)? are disjoint, Lemma 6 tells
1

d
us that (1+u)%eA, implies (1+—) &A,, and
u

vice versa. It also tells that (1+#)“eA, implies
l+u’2A,, and (1+u) “cAimplies 1+ucA,.

These can be summarized as follows:

If C has no codewords of
wW(#+1)eGF2™)",
l+«% A, and

Corollary 7
weight 5, then for any
(1+2)?cA, implies that

(1+—114)d€eA1. m]

Lemma 8 : If C has no codewords of weight
5, then for any w(+1)eGF(2™*, (1+) %A,
implies «‘eA,. '

Proof : If not, there must exist some # such
that u’eA, and (1+w)“=A,. Now,
(1+u)deA1:>(1+-1J)dEAl. Thus, from (4), we
have

(u:1)d<1+_i)d+(l+ uil)d
d
=1+(4y) =

u+1 )
Since the only two elements belonging to both
w \? 1 \*
A, and A?‘ﬁ are 1 and (u+l) +(u+1),

we have

1+(547) A a3

But, #'={1+(1+w}% A4, =1+1+w)"

1 d
2A = (1+—u+1) €A,. Thus, we have

1+(#1)de,41, (14)

o
From the Corollary 7 and Lemma 8, we can
have following corollaries.

Corollary 9 If C has no codewords of
weight 5, then "A,=1+A,. o

Corollary 10 : If C has no codewords of
weight 5, then for any w(+1)eGF(2™*, ucA,

implies # A o

Proof of the Theorem 4 :

i) The case when (d4,2"~1)=1:

Let u(+1) be some nonzero element such that
u’€A;. From Lemma 8, 4«94, =
(1+2) %« A,. Thus, from Lemma 6, we have

ANA,={Lu’+(1+0,
and

AN A={1+u’ 0+ %

d
Consider the element sl=—(114+_—;‘%-. Since

si=u’s|+(1+w? s is either in A nA, or in
"AN"A,. In other words, s, must be one of the
(1+ w9 and
#?+(1+2)° But we can easily check thats;+1,

four elements, 1, 1+ 4%,

si+=(1+ )% and s, #4+(1+2)? Therefore, s
must be 1+#% so we have (1+z) %=1+ x%.
This tells that u’eA,,
(1+w)?=1+u%, and alternately if (14 4) ‘<A,

whenever

then #?=(1+u)%+1. Since only one of x? and

(1+x)¢is in A, for any x, we have

¥4 x0+1, ifxfe A,

P+ +0¢=
A+20%+1Q+2)+1, ifx’e A,

15)
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From (15) we have rHxd+ (1+2) 9)
=tr™(1). Since the set A, is the collection of
all the elements of the form x94(1+x) ¢ and the

size of A, is 2™—1, we have

A ={xeGFQ2™| tr(x) =tr7(1)}, (16)

which in turn implies that

A ={xeGF2™| tr1(x) = r (D +1}. a7n

Now, if m is even, then (16) and (17) become
A ={xeGF(2™ | tr(x) =0} and
A, ={xGF(2™ | tr(x) =1}, respectively, which
contradicts the
tr(x) = trM(x+1).

If m is odd, then (16) and (17) become
A, ={xeGF2™ | tr(x) =1} and A=
{xeGF2™ | tr(x) =0},
contradicts the Corollary 10 since there always

Corollary 9, since

respectively,  which

exists some nonzero element o(+1) such that
r™(v) = tr™(v7Y) in the field GF(2™) if m>3.

The last statement can be proven as follows : If
every nonzero element u(#1) in GF(2™) satisfies

that #7(v) = #r7(v~')+1, then two polynomials

2=t 277, L. 4 2
Ax) = X +x +x +x'+x°+x (18)

and

22" 2n? 4y .2
o) = =X Cx +x+4ix tx"tx+l (19)

are reciprocal to each other, ie, Ax =
x?"‘*l-g(—i), since 12 +x= x(x+1)Ax)
and the roots of Ax) are all the elements whose
trace is O except 0 and the roots of g(x) cover

all but 1 whose trace is 1. The polynomial g(x)
can be rewritten as

PRt 27
. X +1 +1 X +l x+1
g = x+1 +-* x+1 et x+1 TS x+1
2%i-]

,;; '+ zg et ;}x’?l.

i

(20
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For example, compare the coefficient of x? in
Ax) and the coefficient of x2™ 7% in g(x).
From (18), the coefficient of x? in Ax) is O,
but from (20), the coefficient of x2™ ~° in g(x)
is 1 unless m=3. Therefore, Ax) can not be
reciprocal to g(x) if m>3, which leads us to a
contradiction.

ii) The case when (d,27—1)=3

In this case, m must be even, thus GF(4) is a
subfield of GF(2™). Letps be a primitive
element of GF(4). Now, pick some (e GF(4))
such that

294+ (z+w =1 21

has a nonzero solution. Set z=v to be the
solution of @n. Then, x=pB(ut+1),
y=8¥u+1), z=v, and w=ov+u are the
common solutions of the equations (5) and (6),
which implies the existence of a codeword of
weight 5. s]
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