Fuzzy r-convergent nets

Yong Chan Kim and Young Sun Kim

Department of Mathematics Kangnung National University
*Department of Applied Mathematics Pai Chai University

ABSTRACT

In this paper, we investigate some properties of fuzzy r-cluster points and fuzzy r-limit points in smooth fuzzy topological spaces. We define fuzzy r-convergent nets and investigate some of their properties.

1. Introduction and preliminaries

Pu and Liu [13] introduced the notions of Q-neighborhoods and fuzzy nets Q-neighborhoods and established the convergence theory in fuzzy topological spaces. Chen and Cheng [3] introduced the concepts of fuzzy clusterand fuzzy limit points in fuzzy topological spaces with respect to R-neighborhoods instead of Q-neighborhoods. The convergence theory in fuzzy topological spaces has been developed in many directions [4,5,7,15]. A.P. Sostak [14] introduced the smooth fuzzy topology as an extension of Chang's fuzzy topology [1]. In [11], it was introduced the concepts of fuzzy r-cluster and fuzzy r-limit points in smooth fuzzy topological spaces.

In this paper, we investigate some properties of fuzzy r-cluster points and fuzzy r-limit points in smooth fuzzy topological spaces. We define fuzzy r-convergent nets and investigate some of their properties.

Throughout this paper, let X be a nonempty set, I = [0, 1] and $I_0 = (0, 1]$. A fuzzy point x_t for $t \in I_0$ is an element of I^X such that, for $y \in X$,

$$x_t(y) = \begin{cases} t & \text{if } y = x, \\ 0 & \text{if } y \neq x. \end{cases}$$

The set of all fuzzy points in X is denoted by Pt(X). For $x_i \in Pt(X)$, $x_i \in \lambda$ iff $t \leq \lambda(x)$. For λ , $\mu \in I^X$, λ is quasi-coincident with μ , denoted by $\lambda q \mu$, if there exists $x \in X$ such that $\lambda(x) + \mu(x) > 1$. If λ is not quasi-coincident with μ , we denote $\lambda q \mu$.

All the other notations and the other definitions are standard in fuzzy set theory.

Lemma 1.1 [12] Let $f: X \rightarrow Y$ be a function. Let λ , μ , ρ , $\lambda_i \in I^X$ for each $i \in \Gamma$, $x_i \in Pt(X)$ and $v \in I^Y$. Then the following properties hold:

- (1) If $\lambda q \mu$ and $\mu \leq \rho$, then $\lambda q \rho$.
- (2) $x_t q \bigvee_{i \in \Gamma} \lambda_i$ iff there exists $j \in \Gamma$ such that $x_t q \lambda_j$.
- (3) $\lambda \leq \mu \text{ iff } x_t \in \mu \text{ for all } x_t \in \lambda \text{ iff } x_t \neq \lambda \text{ implies } x_t \neq \mu.$
- (4) $\lambda q f^{1}(v)$ iff $f(\lambda) q v$.

Definition 1.2 [14] A function $\tau: I^X \rightarrow I$ is called a *smooth fuzzy topology* on X if it satisfies the following conditions:

(O1) $\tau(0) = \tau(1) = 1$, where $\widetilde{0}(x) = 0$ and $\widetilde{1}(x) = 1$ for all $x \in X$.

(O2) $\tau(\mu_1 \wedge \mu_2) \geq \tau(\mu_1) \wedge \tau(\mu_2)$, for any $\mu_1, \mu_2 \in I^X$.

(O3) $\tau(\bigvee_{i \in \Gamma} \mu_i) \ge \bigwedge_{i \in \Gamma} \tau(\mu_i)$, for any $\{\mu_i\}_{i \in \Gamma} \subset I^X$. The pair (X, τ) is called a *smooth fuzzy topological space*.

Theorem 1.3 [2] Let (X, τ) be a smooth fuzzy topological space. For each $r \in I_0$ and $\lambda \in I^X$, we define a fuzzy closure operator $C_\tau: I^X \times I_0 \to I^X$ as follows:

$$C_{\tau}(\lambda, r) = \bigwedge \{ \rho \in I^X \mid \lambda \leq \rho, \ \tau(\widetilde{1} - \rho) \geq r \}.$$

For λ , $\mu \in I^X$ and r, $s \in I_0$, it satisfies the following properties:

- (1) $C_{r}(0, r) = 0$.
- (2) $\lambda \leq C_r(\lambda, r)$.
- (3) $C_t(\lambda, r) \vee C_t(\mu, r) = C_t(\lambda \vee \mu, r)$.
- (4) $C_t(\lambda, r) \leq C_t(\lambda, s)$, if $r \leq s$.
- (5) $C_t(C_t(\lambda, r), r) = C_t(\lambda, r)$.

Definition 1.4 [6] Let (X, τ) be a smooth fuzzy topological space, $\mu \in I^X$, $x_i \in Pt(X)$ and $r \in I_0$. μ is called a r-open Q-neighborhood of x_i if $x_i \neq \mu$ with $\tau(\mu) \geq r$.

We denote

$$\mathcal{N}(x_t, r) = \{ \mu \in I^X \mid x_t \neq \mu, \ \pi(\mu) \geq r \}.$$

Definition 1.5 [10] Let (X, τ) be a smooth fuzzy topological space, $\lambda \in I^X$, $x_t \in Pt(X)$ and $r \in I_0$. x_t is called a *fuzzy r-adherent point* of λ if for every $\mu \in \mathcal{N}(x_t, r)$, we have $\mu \neq \lambda$.

Theorem 1.6 [10] Let (X, τ) be a smooth fuzzy topological space. For each $\lambda \in I^X$ and $r \in I_0$, we have

 $C_t(\lambda, r) = \bigvee \{x_t \in Pt(X) \mid x_t \text{ is a fuzzy r-adherent point of } \lambda \}.$

Definition 1.7 [13] Let D be a directed set. A function $S: D \rightarrow Pt(X)$ is called a *fuzzy net*. Let $\lambda \in I^X$. We say S is a *fuzzy net in* λ if $S(n) \in \lambda$ for every $n \in D$. A fuzzy net S is *increasing*(resp. decreasing) if $S(m) \leq S(n)$ (resp. $S(n) \leq S(m)$) for every $m \leq n$ with $m, n \in D$.

Definition 1.8 [11] Let (X, τ) be a smooth fuzzy topological space, $\mu \in I^X$, $x_t \in Pt(X)$ and $r \in I_0$.

- (1) x_t is called a *fuzzy r-cluster point* of S, denoted by $S \overset{r}{\infty} x_t$, if for every $\mu \in \mathcal{M}(x_t, r)$, S is frequently quasi-coincident with μ , that is, for each $n \in D$, there exists $n_0 \in D$ such that $n_0 \ge n$ and $S(n_0) \neq \mu$.
- (2) x_t is called a fuzzy r-limit point of S, denoted by $S \xrightarrow{r} x_t$, if for every $\mu \in \mathcal{M}(x_t, r)$, S is eventually quasi-coincident with μ , that is, there exists $n_0 \in D$ such that for each $n \in D$ with $n \ge n_0$, we have $S(n) \neq \mu$.

We denote

 $clu_t(S, r) = \bigvee \{x_t \in Pt(X) \mid x_t \text{ is a fuzzy r-cluster point of } S\},$

 $\lim_{t} (S, r) = \bigvee \{x_t \in Pt(X) \mid x_t \text{ is a fuzzy r-limit point of } S\}.$

Definition 1.9 [13] Let $S: D \rightarrow Pt(X)$ and $T: E \rightarrow Pt(X)$ be two fuzzy nets. A fuzzy net T is called a *subnet* of S if there exists a function $N: E \rightarrow D$, called by a *cofinal selection* on S, such that

- (1) $T=S \circ N$;
- (2) For every $n_0 \in D$, there exists $m_0 \in E$ such that $N(m) \ge n_0$ for $m \ge m_0$.

Theorem 1.10 [11] Let (X, τ) be a smooth fuzzy topological space. Let $S: D \rightarrow Pt(X)$ be a fuzzy net and $T \ E \rightarrow Pt(X)$ a subnet of S. For $r, s \in I_0$, the following properties hold:

- (1) If $S \xrightarrow{r} x_t$, then $S \xrightarrow{r} x_t$.
- (2) $\lim_{t} (S, r) \leq c \lim_{t} (S, r)$.
- (3) If $S \stackrel{r}{\infty} x_t$ and $x_t \ge x_s$, then $S \stackrel{r}{\infty} x_s$.
- (4) If $S \xrightarrow{r} x_t$ and $x_t \ge x_s$, then $S \xrightarrow{r} x_s$.
- (5) $S \stackrel{r}{\infty} x_t$ iff $x_t \in clu_t(S, r)$.
- (6) $S \xrightarrow{r} x_t$ iff $x_t \in lim_t(S, r)$.
- (7) If $S \xrightarrow{r} x_t$, then $T \xrightarrow{r} x_t$.
- (8) $\lim_{t} (S, r) \leq \lim_{t} (T, r)$.
- (9) If $T \propto x_t$, then $S \propto x_t$
- (10) $clu_{\tau}(T, r) \leq clu_{\tau}(S, r)$.

Theorem 1.11 [11] Let (X, τ) be a smooth fuzzy topological space and $x_i \in Pt(X)$ and $r \in I_0$. For every fuzzy net S, $S \xrightarrow{r} x_t$ iff $T \xrightarrow{c} x_t$, for every subnet T of S.

Theorem 1.12 [11] Let (X, τ) be a smooth fuzzy topological space and $x_t \in Pt(X)$ and $r \in I_0$. For every fuzzy net $S: D \rightarrow Pt(X)$, $S \stackrel{\sim}{\infty} x_t$ iff S has a subnet T such that $T \stackrel{\sim}{\to} x_t$.

Theorem 1.13 [11] Let (X, τ) be a smooth fuzzy topological space and $x_t \in Pt(X)$ and $r \in I_0$. Then the following statements are equivalent.

- (1) $x_t \in C_t(\lambda, r)$.
- (2) There exists a fuzzy net $S \subseteq \lambda$ such that $S \stackrel{r}{\infty} x_{\ell}$.
- (3) There exists a fuzzy net $S \subseteq \lambda$ such that $S \xrightarrow{r} x_t$.

2. The properties of fuzzy r-cluster and fuzzy r-limit points

Theorem 2.1 Let (X, τ) be a smooth fuzzy topological space and $S: D \rightarrow Pt(X)$ a fuzzy net. For $r \in I_0$, the following properties hold:

- (1) $C_{\tau}(clu_{\tau}(S, r), r) = clu_{\tau}(S, r)$.
- $(2) clu_t(S, r) \leq C_t(\bigvee_{n \in D} S(n), r).$

Proof. (1) From Theorem 1.3(2), we have

$$C_{\tau}(clu_{\tau}(S, r), r) \ge clu_{\tau}(S, r).$$

Suppose $C_t(clu_t(S, r), r) \le clu_t(S, r)$. From Theorem 1.6, there exists a fuzzy r-adherent point x_t of $clu_t(S, r)$ such that

$$C_t(clu_t(S, r), r)(x) \ge t > clu_t(S, r)(x)$$
.

Since x_t is a fuzzy r-adherent point of $clu_t(S, r)$, for each $\mu \in \mathcal{M}(x_t, r)$, we have

$$\mu q clu_{\tau}(S, r)$$
.

Since μ q $clu_{\tau}(S, r)$, there exists $y \in X$ such that $\mu(y) + clu_{\tau}(S, r)(y) > 1$.

From the definition of $clu_t(S, r)$, there exists a fuzzy r-cluster point y_p of S such that

$$\mu(y) + clu_{\tau}(S, r)(y) \ge \mu(y) + p > 1.$$

Thus $\mu \in \mathcal{M}y_p$, r). Since $S \stackrel{\checkmark}{\infty} y_p$ and $\mu \in \mathcal{M}y_p$, r), for each $n \in D$, there exists $n_0 \in D$ such that $n_0 \ge n$ and $S(n_0)$ $q \mu$. Hence x_i is a fuzzy r-cluster point of S. So, $clu_{\mathcal{L}}(S, r)(x) \ge t$. It is a contradiction. Hence

$$C_t(clu_t(S, r), r) \leq clu_t(S, r).$$

(2) Suppose $clu_{\tau}(S, r) \leq C_{\tau}(\bigvee_{n \in D} S(n), r)$. Then there exists a fuzzy r-cluster point x_r of S such that

$$clu_{\tau}(S, r)(x) \ge t > C_{\tau}(\bigvee_{n \in D} S(n), r)(x). \tag{I}$$

Since x_t is a fuzzy r-cluster point of S, for each $\mu \in \mathcal{N}(x_t, r)$, for each $n \in D$, there exists $n_0 \ge n$ with $S(n_0)$ q μ . Since $S(n_0) \le \bigvee_{n \in D} S(n)$, by Lemma 1.1(1), we have $\bigvee_{n \in D} S(n)$ q μ . Hence x_t is a fuzzy r-adherent point of $\bigvee_{n \in D} S(n)$. Therefore $C_t(\bigvee_{n \in D} S(n), r)(x) \ge t$. It is a contradiction for (I). Hence

$$clu_t(S, r) \leq C_t(\bigvee_{n \in D} S(n), r).$$

Theorem 2.2 Let (X, τ) be a smooth fuzzy

topological space and S, $U: D \rightarrow Pt(X)$ fuzzy nets such that $S(n) \lor U(n)$, $S(n) \land U(n) \in Pt(X)$ for each $n \in D$. Define fuzzy nets $S \lor U$, $S \land U: D \rightarrow Pt(X)$ by, for each $n \in D$,

$$(S \lor U)(n) = S(n) \lor U(n), (S \land U)(n) = S(n) \land U(n).$$

For each $r \in I_0$, the following properties hold:

(1) If $S(n) \le U(n)$ for all $n \in D$, then

 $clu_{\tau}(S, r) \leq clu_{\tau}(U, r), lim_{\tau}(S, r) \leq lim_{\tau}(U, r).$

- (2) $clu_t(S \vee U, r) = clu_t(S, r) \vee clu_t(U, r)$.
- (3) $clu_t(S \wedge U, r) \leq clu_t(S, r) \wedge clu_t(U, r)$.
- (4) $\lim_{r \to \infty} (S \vee U, r) \leq \lim_{r \to \infty} (S, r) \vee \lim_{r \to \infty} (U, r)$.
- (5) $\lim_{\tau} (S \wedge U, r) \leq \lim_{\tau} (S, r) \wedge \lim_{\tau} (U, r)$.

Proof. (1) Let x_t is a fuzzy r-cluster point of S. For each $\mu \in \mathcal{M}(x_t, r)$ and for each $n \in D$, there exists $n_0 \in D$ such that $n_0 \ge n$ and $S(n_0) \neq \mu$. Since $S(n) \le U(n)$ for all $n \in D$, by Lemma 1.1(1), $U(n_0) \neq \mu$. Thus x_t is a fuzzy r-cluster point of U. Hence $clu_*(S, r) \le clu_*(U, r)$. Similarly, we have $lim_*(S, r) \le lim_*(U, r)$.

(2) Since $S \le S \land U$ and $T \le S \lor U$, by (1), we have

$$clu_{\tau}(S \vee U, r) \geq clu_{\tau}(S, r) \vee clu_{\tau}(U, r).$$

Suppose $clu_{\tau}(S \lor U, r) \not\leq clu_{\tau}(S, r) \lor clu_{\tau}(U, r)$. Then there exists a fuzzy r-cluster point x_t of $S \lor U$ such that

$$clu_t(S \vee U, r)(x) \ge t > clu_t(S, r)(x) \vee clu_t(U, r)(x)$$
.

Hence $x_t \notin clu_t(S, r)$ and $x_t \notin clu_t(U, r)$.

Since x_i is not a fuzzy r-cluster point of S, there exist $\mu_1 \in \mathcal{N}(x_i, r)$ and $n_1 \in D$ such that $S(n) \ \overline{q} \ \mu_1$ for every $n \in D$ with $n \ge n_1$.

Since x_i is not a fuzzy r-cluster point of U, there exist $\mu_2 \in \mathcal{M}(x_i, r)$ and $n_2 \in D$ such that $U(n) \ \overline{q} \ \mu_2$ for every $n \in D$ with $n \ge n_2$.

Let $\mu = \mu_1 \land \mu_2$ and $n_3 \in D$ such that $n_3 \ge n_1$ and $n_3 \ge n_2$. Since $\mu_1 \le \widetilde{1} - S(n)$ and $\mu_2 \le \widetilde{1} - U(n)$ for $n \ge n_3$, we have $\mu_1 \land \mu_2 \le \widetilde{1} - (S(n) \lor U(n))$. So, $\mu \in \mathcal{M}(x_i, r)$ and $n_3 \in D$ such that $(S \lor U)(n) \ \overline{q} \ \mu$ for every $n \in D$ with $n \ge n_3$. Thus x_i is not a fuzzy r-cluster point of $S \lor U$. It is a contradiction. Hence we have

$$clu_{\tau}(S \vee U, r) \leq clu_{\tau}(S, r) \vee clu_{\tau}(U, r).$$

(3),(4) and (5) are easily proved.

Theorem 2.3 Let (X, τ) be a smooth fuzzy topological space and $S: D \rightarrow Pt(X)$ a fuzzy net. Then we have

$$clu_{\tau}(S, r) = \bigwedge_{n_0 \in D} C_{\tau}(\bigvee_{n \geq n_0} S(n), r).$$

Proof. Let $x_t \in clu_t(S, r)$. From Theorem 1.10 (5), since x_t is a fuzzy r-cluster point of S, for each $\mu \in \mathcal{M}(x_t, r)$ and for each $n_0 \in D$, there exists $n \in D$ such that $n \ge n_0$ and $S(n) \neq \mu$. Since $S(n) \le \bigvee_{n \ge n_0} S(n)$, by Lemma

1.1(1), we have $\bigvee_{n \ge n_0} S(n) \ q \ \mu$. Hence x_t is a fuzzy radherent point of $\bigvee_{n \ge n_0} S(n)$, for all $n_0 \in D$, that is,

$$x_i \in \bigwedge_{n_0 \in D} C_i(\bigvee_{n \geq n_0} S(n), r).$$

From Lemma 1.1 (3), we have

$$clu_{\tau}(S, r) \leq \bigwedge_{n_0 \in D} C_{\tau}(\bigvee_{n \geq n_0} S(n), r).$$

Suppose

$$clu_{\tau}(S, r) \ngeq \bigwedge_{n_0 \in D} C_{\tau}(\bigvee_{n \ge n_0} S(n), r).$$

There exists a fuzzy r-adherent point x_t of $\bigvee_{n \geq n_0} S(n)$, for all $n_0 \subseteq D$, such that

$$clu_{\tau}(S, r)(x) < t \le C_{\tau}(\bigvee_{n \ge n_0} S(n), r)(x).$$

Since x_t is a fuzzy r-adherent point of $\bigvee_{n \ge n_0} S(n)$, for each $n_0 \in D$, for each $\mu \in \mathcal{M}(x_t, r)$, we have

$$\bigvee_{n\geq n_0} S(n) \ q \ \mu.$$

Since $\bigvee_{n\geq n_0} S(n) \ q \ \mu$, there exists $y\in X$ such that

$$\bigvee_{n\geq n_0} S(n)(y) + \mu(y) > 1.$$

Then there exists $n \in D$ such that $n \ge n_0$ and

$$\bigvee_{n \ge n_0} S(n)(y) + \mu(y) \ge S(n)(y) + \mu(y) > 1.$$

It implies $S(n) q \mu$. Hence x_t is a fuzzy r-cluster point of S, that is,

$$x_t \in clu_t(S, r)$$
.

It is a contradiction. Hence

$$clu_{t}(S, r) \ge \bigwedge_{n_{0} \in D} C_{t}(\bigvee_{n \ge n_{0}} S(n), r).$$

Theorem 2.4 Let (X, τ) be a smooth fuzzy topological space and $S: D \rightarrow Pt(X)$ a fuzzy net. For $r \in I_0$, the following properties hold:

- (1) $C_t(\lim_t(S, r), r) = \lim_t(S, r)$.
- $(2) \ \, \bigwedge_{n \in D} \ \, S(n) \leq \lim_{\tau} (S, \ r).$
- $(3) \ \bigvee_{n_0 \in D} (\bigwedge_{n \geq n_0} S(n)) \leq \lim_{\tau} (S, r).$

Proof. (1) It is similarly proved as Theorem 2.1(1). (2) Suppose $\bigwedge_{n\in D} S(n) \not\leq \lim_{\tau} (S, r)$. Then there exist $x\in X$ and $t\in I_0$ such that

$$\bigwedge_{n\in\mathbb{N}} S(n)(x) > t > \lim_{t \to \infty} (S, r)(x).$$

Since $t > \lim_{t}(S, r)(x)$, by Theorem 1.10(6), x_t is not a fuzzy r-limit point of S. So, there exists $\mu \in \mathcal{N}(x_t, r)$ such that for each $n \in D$, there exists $n_0 \in D$ satisfying $n_0 \ge n$ and $\mu \ \overline{q} \ S(n_0)$. Since $x_t \ q \ \mu$, we have

$$S(n_0)(x) + 1 - t < S(n_0)(x) + \mu(x) \le 1.$$

Thus $S(n_0)(x) < t$ implies $\bigwedge_{n \in D} S(n)(x) < t$. It is a contradiction. Hence we have

$$\bigwedge_{n\in D} S(n) \leq \lim_{t} (S, r).$$

(3) Suppose $\bigvee_{n_0 \in D} (\bigwedge_{n \geq n_0} S(n)) \leq \lim_{\tau} (S, r)$. Then

there exist a $x \in X$ and $t \in I_0$ such that

$$\bigvee_{n_0 \in D} (\bigwedge_{n \geq n_0} S(n))(x) > t > \lim_{t \in S} (S, r)(x).$$

Since $t < \bigvee_{n_0 \in D} (\bigwedge_{n \ge n_0} S(n))(x)$, there exists $n_0 \in D$ such that

$$x_i \in \bigwedge_{n \geq n_0} S(n)$$
.

It implies $t \le S(n)(x)$ for all $n \ge n_0$. Hence for each $\mu \in \mathcal{N}(x_t, r)$, $t + \mu(x) > 1$ implies $S(n)(x) + \mu(x) > 1$, for all $n \ge n_0$. So, x_t is a fuzzy r-limit point of S. It is a contradiction. Hence we have

$$\bigvee_{n_0 \in D} (\bigwedge_{n \geq n_0} S(n)) \leq \lim_{\tau} (S, r).$$

Example 2.5 Let $X = \{a, b\}$ be a set, N a natural number set and $\mu \in I^X$ as follows:

$$\mu(a) = 0.3$$
, $\mu(b) = 0.4$.

We define a smooth fuzzy topology $\tau: I^X \rightarrow I$ as follows:

$$\tau(\lambda) = \begin{cases} 1, & \text{if } \lambda = \tilde{0} \text{ or } \tilde{1}, \\ \frac{1}{2}, & \text{if } \lambda = \mu, \\ 0, & \text{otherwise.} \end{cases}$$

(1) In general, $clu_t(S, r) \neq C_t(\bigvee_{n \in D} S(n), r)$. Define a fuzzy net $S: N \rightarrow Pt(X)$ by

$$S(n) = x_{a}$$
, $a_n = 0.6 + 0.2/n$.

Then $\bigvee_{n \in \mathbb{N}} S(n) = x_{0.8}$. From Theorem 1.3, we have for all $r \in I_0$,

$$C_r(x_{0.8}, r) = \tilde{1}.$$

But $x_{0.8}$ is not a fuzzy 1/2-cluster point of S, because there exist $\mu \in \mathcal{N}(x_{0.8}, 1/2)$ and $2 \in \mathbb{N}$, for all $n \ge 2$, we have S(n) \bar{q} μ . It follows

$$clu_{\tau}(S, 1/2)(x) < 0.8$$
 but $C_{\tau}(\bigvee_{n \in D} S(n), 1/2)(x) = 1$.

(2) In general, $clu_{\tau}(S \wedge U, r) \neq clu_{\tau}(S, r) \wedge clu_{\tau}(U, r)$. Define fuzzy nets $S, U : N \rightarrow Pt(X)$ by

$$S(n) = x_{a_n} \ a_n = 0.8 + (-1)^n 0.2.$$

$$U(n) = x_{bn}$$
 $b_n = 0.8 + (-1)^{n+1}0.2$.

From Theorem 2.2, $(S \wedge U)(n) = x_{0.6}$ is a fuzzy net. For $\mu \in \mathcal{M}(x_{0.8}, 1/2)$ and for all $n \in \mathbb{N}$, we have $(S \wedge U)(n) \overline{q} \mu$. Thus $x_{0.8}$ is not a fuzzy 1/2-cluster point of $S \wedge U$.

On the other hand, for $\widetilde{1}$, $\mu \in \mathcal{N}(x_{0.8}, 1/2)$ and for each $n \in \mathbb{N}$, there exists $2n \ge n$ such that S(2n) q μ and there exists $2n+1 \ge n$ such that U(2n+1) q μ . It implies

$$x_{0.8} \in clu_t(S, 1/2), x_{0.8} \in clu_t(U, 1/2).$$

Hence we have

$$clu_{\tau}(S \wedge U, 1/2)(x) < 0.8 \le clu_{\tau}(S, 1/2)(x) \wedge clu_{\tau}(U, 1/2)(x).$$

(3) In general, $\lim_{\tau} (S \vee U, r) \neq \lim_{\tau} (S, r) \vee \lim_{\tau} (U, r)$. Define fuzzy nets $S, U : N \rightarrow Pt(X)$ by

$$S(n) = x_{an} a_n = 0.6 + (-1)^n 0.2.$$

$$U(n) = x_{b_n} b_n = 0.6 + (-1)^{n+1}0.2.$$

From Theorem 2.2, $(S \lor U)(n) = x_{0.8}$ is a fuzzy net. For $\widetilde{1}$, $\mu \in \mathcal{N}(x_{0.8}, 1/2)$ and for each $n \in \mathbb{N}$, $(S \lor U)(n) q \mu$ and $(S \lor U)(n) q \widetilde{1}$. Hence $x_{0.8}$ is a fuzzy 1/2-limit point of $S \lor U$.

On the other hand, for $\mu \in \mathcal{M}(x_{0.8}, 1/2)$ and for each $n \in \mathbb{N}$, there exists $2n+1 \ge n$ such that S(2n+1) \overline{q} μ and there exists $2n \ge n$ such that U(2n) \overline{q} μ . Thus

$$x_{0.8} \notin \lim_{t} (S, 1/2), x_{0.8} \notin \lim_{t} (U, 1/2).$$

So,

 $\lim_{\tau} (S \vee U, 1/2)(x) \ge 0.8 > \lim_{\tau} (S, 1/2)(x)$ $\vee \lim_{\tau} (U, 1/2)(x).$

(4) In general, $\bigwedge_{n \in D} S(n) \neq \lim_{\tau \in S} (S, r)$ and $\bigvee_{n_0 \in D} (\bigwedge_{n \geq n_0} S(n)) \neq \lim_{\tau \in S} (S, r)$. Define a fuzzy net $S : N \rightarrow Pt(X)$ by

$$S(n) = x_{an}, a_n = 0.8 + (-1)^n 0.2.$$

Then we have

$$\bigwedge_{n \in D} S(n) = \bigvee_{n_0 \in D} (\bigwedge_{n \geq n_0} S(n)) = x_{0.6}.$$

Then $x_{0.7}$ is a fuzzy 1/2-limit point of S, for $\widetilde{1} \subseteq \mathcal{N}(x_{0.7}, 1/2)$ and for all $n \subseteq N$, we have $S(n) \neq \widetilde{1}$.

$$\lim_{x} (S, 1/2)(x) \ge 0.7.$$

Hence

$$\bigwedge_{n\in D} S(n) = \bigvee_{n_0\in D} (\bigwedge_{n\geq n_0} S(n)) \neq \lim_{n \in S} (S, 1/2).$$

Theorem 2.6 Let (X, τ) be a smooth fuzzy topological space and $S: D \rightarrow Pt(X)$ a decreasing fuzzy net. Then, for each $r \in I_0$, we have

$$clu_{\tau}(S, r) = \bigwedge_{n \in D} C_{\tau}(S(n), r).$$

Proof. Suppose

$$clu_{\tau}(S, r) \not\leq \bigwedge_{n \in D} C_{\tau}(S(n), r).$$

There exists a fuzzy r-cluster point x_t of S such that

$$clu_{\tau}(S, r)(x) \ge t > \bigwedge_{n \in D} C_{\tau}(S(n), r)(x)$$

Since x_i is a fuzzy r-cluster point of S, for each $\mu \in \mathcal{M}(x_i, r)$ and $n \in D$, there exists $n_0 \in D$ such that $n_0 \ge n$ and $S(n_0) \neq \mu$. Since S is a decreasing fuzzy net, for $n_0 \ge n$, by Lemma 1.1(1), $S(n_0) \neq \mu$ implies $S(n) \neq \mu$. Hence x_i is a fuzzy r-adherent point of S(n), for each $n \in D$, that is,

$$x_t \in \bigwedge_{n \in D} C_t(S(n), r).$$

It is a contradiction. Hence

$$clu_{\tau}(S, r) \leq \bigwedge_{n \in D} C_{\tau}(S(n), r).$$

Suppose

$$clu_{\bullet}(S, r) \ngeq \bigwedge_{n \in D} C_{\bullet}(S(n), r).$$

There exists $x \in X$ such that

$$clu_{\tau}(S, r)(x) < \bigwedge_{n \in D} C_{\tau}(S(n), r)(x).$$

There exists a fuzzy r-adherent point x_i of S(n), for all $n \in D$, such that

$$clu_{\tau}(S, r)(x) < t \le \bigwedge_{n \in D} C_{\tau}(S(n), r)(x)$$

Since x_t is a fuzzy r-adherent point of S(n), for all $n \in D$, for each $\mu \in \mathcal{M}(x_t, r)$ and for $n \in D$, there exists $n \in D$ such that $n \ge n$ and $S(n) \neq \mu$. Hence x_t is a fuzzy r-cluster point of S, that is,

$$x_t \in clu_t(S, r)$$
.

It is a contradiction. Hence

$$clu_{\tau}(S, r) \ge \bigwedge_{n \in D} C_{\tau}(S(n), r).$$

Theorem 2.7 Let (X, τ) be a smooth fuzzy topological space and $S: D \rightarrow Pt(X)$ an increasing fuzzy net. Then, for each $r \in I_0$, we have

$$\lim_{r \to \infty} (S, r) = C_r(\bigvee_{n \in D} S(n), r).$$

Proof. Suppose

$$\lim_{t}(S, r) \leq C_{t}(\bigvee_{n \in D} S(n), r).$$

There exists a fuzzy r-limit point x_t of S such that

$$\lim_{t} (S, r)(x) \ge t > C_{t}(\bigvee_{n \in D} S(n), r)(x).$$

Since x_t is a fuzzy r-limit point of S, for each $\mu \in \mathcal{M}(x_t, r)$, there exists $n_0 \in D$ such that for all $n \ge n_0$, S(n) q μ . It implies $\bigvee_{n \in D} S(n)$ q μ . Hence x_t is a fuzzy r-adherent point of $\bigvee_{n \in D} S(n)$. It is a contradiction. Hence

$$\lim_{t \to \infty} (S, r) \leq C_t (\bigvee_{n \in D} S(n), r).$$

Suppose

$$\lim_{t} (S, r) \geq C_{t}(\bigvee_{n \in D} S(n), r).$$

There exists a fuzzy r-adherent point x_i of $\bigvee_{n \in D} S(n)$ such that

$$\lim_{t \to \infty} (S, r)(x) < t \le C_t(\bigvee_{n \in D} S(n), r)(x).$$

Since x_t is a fuzzy r-adherent point of $\bigvee_{n\in D} S(n)$, for each $\mu\in\mathcal{N}(x_t, r)$, we have $\bigvee_{n\in D} S(n) \ q \ \mu$. By Lemma 1.1(2), there exists $n_0\in D$ such that $S(n_0) \ q \ \mu$. Since S is an increasing fuzzy net, for $n\geq n_0$, $S(n_0) \ q \ \mu$ implies $S(n) \ q \ \mu$. Hence x_t is a fuzzy r-limit point of S, that is,

 $x_i \in lim_{\tau}(S, r)$.

It is a contradiction. Hence

$$\lim_{t}(S, r) \geq C_{t}(\bigvee_{n \in D} S(n), r). \qquad \Box$$

Definition 2.8 Let (X, τ_1) and (Y, τ_2) be smooth fuzzy topological spaces. A function $f: (X, \tau_1) \rightarrow (Y, \tau_2)$ is *fuzzy continuous* if for all $v \in I^Y$, $\tau_1(f^{-1}(v)) \ge \tau_2(v)$.

Theorem 2.9 Let (X, τ_1) and (Y, τ_2) be smooth fuzzy topological spaces. For every fuzzy net $S, x_i \in Pt(X), r \in I_0$ and $\lambda \in I^X$, the following statements are equivalent.

- (1) $f:(X, \tau_1) \rightarrow (Y, \tau_2)$ is fuzzy continuous.
- (2) If $S_{\infty}^{r} x_{t}$, then $f(S) _{\infty}^{r} f(x)_{t}$.
- (3) If $S \xrightarrow{r} x_t$, then $f(S) \xrightarrow{r} f(x)_t$.
- $(4) f(C_{\tau_1}(\lambda, r)) \leq C_{\tau_2}(f(\lambda), r).$

Proof. (1) \Rightarrow (2) Let $\mu \in \mathcal{N}(f(x)_t, r)$. Since f is fuzzy continuous, then $\tau_1(f^{-1}(\mu)) \geq \tau_2(\mu) \geq r$ and $f(x)_t \neq \mu$ implies $x_t \neq f^1(\mu)$ from Lemma 1.1(4). Hence $f^1(\mu) \in \mathcal{N}(x_t, r)$. Since $S_{\infty}^{\leftarrow} x_t$, for $f^1(\mu) \in \mathcal{N}(x_t, r)$ and for each $n \in D$, there exists $n_0 \in D$ such that $n_0 \geq n$ and $S(n_0) \neq f^1(\mu)$. By Lemma 1.1(4), it implies $f(S(n_0)) \neq \mu$. Hence $f(S) \subset f(x)$.

(2) \Rightarrow (3) Let $S \xrightarrow{r} x_t$. Every subnet $U : E \rightarrow Pt(Y)$ of f(S), there exists a cofinal selection $N : E \rightarrow D$ such that $U = f(S) \circ N = f \circ (S \circ N)$. Put $T = S \circ N$. Then T is a subnet of S. We can prove it from the followings:

$$S \xrightarrow{r} x_i \Rightarrow T \xrightarrow{r} x_i$$
 (by Theorem 1.10(7))
 $\Rightarrow T \xrightarrow{r} x_i$ (by Theorem 1.10(1))
 $\Rightarrow f(T) = U \xrightarrow{r} f(x)_i$ (by (2))
 $\Rightarrow f(S) \xrightarrow{r} f(x)_i$. (by Theorem 1.11)

(3) \Rightarrow (4) Suppose there exist λ and $r \in I_0$ such that $f(C_{\tau_1}(\lambda, r)) \not\leq C_{\tau_2}(f(\lambda), r)$.

Then there exists $y \in Y$ such that

$$f(C_{\tau_1}(\lambda, r))(y) > C_{\tau_2}(f(\lambda), r)(y).$$
 (II)

So, there exists $x \in f^{-1}(y)$ such that

$$f(C_{\tau_1}(\lambda, r))(y) \ge C_{\tau_1}(\lambda, r)(x) > C_{\tau_2}(f(\lambda), r)(y).$$

From Theorem 1.6, there exist a fuzzy r-adherent point x_t of λ on (X, τ_t) such that

$$C_{\tau_1}(\lambda, r)(x) \ge t > C_{\tau_2}(f(\lambda), r)(f(x)).$$

Since $x_i \in C_{\tau_1}(\lambda, r)$, by Theorem 1.13, there exists a fuzzy net $S \in \lambda$ such that $S \xrightarrow{r} x_i$. By (3), $f(S) \xrightarrow{r} f(x)_i$ with f(S) in $f(\lambda)$. From Theorem 1.13, we have $f(x)_i = y_i \in C_{\tau_2}(f(\lambda), r)$. It is a contradiction for (II). Hence, for all $\lambda \in I^X$ and $r \in I_0$, we have

$$f(C_{\tau_1}(\lambda, r)) \leq C_{\tau_2}(f(\lambda), r).$$

 $(4)\Rightarrow(1)$ It is similar to Theorem 2.12 of [10]. \Box From Theorem 2.9, we can easily obtain the following corollary.

Corollary 2.10 Let (X, τ_1) and (Y, τ_2) be smooth fuzzy topological spaces. For each fuzzy net S, $\lambda \in I^X$ and $r \in I_0$, the following statements are equivalent.

- (1) $f: (X, \tau_1) \rightarrow (Y, \tau_2)$ is fuzzy continuous.
- $(2) f(clu_{\tau_1}(S, r)) \leq clu_{\tau_2}(f(S), r).$
- $(3) f(\lim_{\tau_1}(S, r)) \leq \lim_{\tau_2}(f(S), r).$
- $(4) f(C_{\tau_1}(\lambda, r)) \leq C_{\tau_2}(f(\lambda), r).$

3. Fuzzy r-convergent nets

Definition 3.1 Let (X, τ) be a smooth fuzzy topological space, $\mu \in I^X$, $x_i \in Pt(X)$ and $r \in I_0$. A fuzzy net S is said to be *fuzzy r-convergent* to μ , denoted by $con_t(S, r) = \mu$, if $clu_t(S, r) = lim_t(S, r) = \mu$.

Theorem 3.2 Let (X, t) be a smooth fuzzy topological space and S, $U: D \rightarrow Pt(X)$ fuzzy r-convergent nets such that $S(n) \lor U(n) \in Pt(X)$ for each $n \in D$. Then for each $r \in I_0$,

$$con_{t}(S \lor U, r) = con_{t}(S, r) \lor con_{t}(U, r).$$

Proof. From Theorem 2.2, $S \lor U$ is a fuzzy net. We easily proved it from the followings:

$$clu_{\tau}(S \lor U, r) = clu_{\tau}(S, r) \lor clu_{\tau}(U, r)$$
 (by Theorem 2.2(2))

(since S and U are fuzzy r-convergent nets,)

$$= \lim_{t} (S, r) \vee \lim_{t} (U, r)$$

$$\leq lim_{\tau}(S \vee U, r)$$

(by Theorem 2.2(4))

$$\leq clu_{\tau}(S \vee U, r)$$
.

(by Theorem 1.10(2))

Theorem 3.3 Let (X, τ) be a smooth fuzzy topological space. Let S be a fuzzy net and $\mathcal{H} = \{T \mid T \text{ is a subnet of } S\}$. Then the following statements hold:

- (1) $\lim_{t}(S, r) = \bigwedge_{T \in \mathcal{H}} clu_{t}(T, r)$.
- (2) $clu_{\tau}(S, r) = \bigvee_{T \in \mathcal{H}} lim_{\tau}(T, r)$.
- (3) If $con_t(S, r) = \mu$, then $con_t(T, r) = \mu$ for each $T \in \mathcal{H}$.

Proof. (1) For each $T \subseteq \mathcal{H}$, by Theorem 1.10 (2,8,10), we have

$$\lim_{t}(S, r) \leq \lim_{t}(T, r) \leq c \ln_{t}(T, r) \leq c \ln_{t}(S, r). \quad (III)$$

Hence

 $\lim_{t}(S, r) \leq \bigwedge_{T \in \mathcal{H}} clu_{t}(T, r)$

Suppose

$$\lim_{t}(S, r) \geq \bigwedge_{T \in \mathcal{H}} clu_{t}(T, r).$$

Then there exist $x \in X$ and $t \in I_0$ such that

$$\lim_{t} (S, r)(x) < t < \bigwedge_{T \in \mathcal{H}} clu_{t}(T, r)(x). \tag{IV}$$

Since $\lim_{t}(S, r)(x) < t$, by Theorem 1.10(6), x_t is not a fuzzy r-limit point of S, that is, there exists $\mu \in \mathcal{M}(x_t, r)$ such that for each $n \in D$ there exists $N(n) \in D$ with for $N(n) \ge n$ and S(N(n)) \overline{q} μ . Hence there exists a cofinal selection $N : E \to D$ such that $T = S \circ N$. Thus T is a subnet of S. Moreover, x_t is not a fuzzy r-cluster point of T. By Theorem 1.10(5), $clu_t(T, r)(x) < t$. It is a contradiction for (IV). Hence

$$\lim_{t}(S, r) \ge \bigwedge_{T \in \mathcal{H}} clu_t(T, r).$$

(2) From (III) of (1), we have

$$\bigvee_{T \in \mathcal{H}} \lim_{t} (T, r) \leq clu_{t}(S, r).$$

Suppose

$$\bigvee_{T \in \mathcal{H}} \lim_{t} (T, r) \not\geq clu_{t}(S, r).$$

Then there exist $x \in X$ and $t \in I_0$ such that

$$\bigvee_{T \in \mathcal{H}} \lim_{t \to \infty} (T, r)(x) < t < clu_{\tau}(S, r)(x). \tag{V}$$

Since $x_i \in clu_\tau(S, r)$, by Theorem 1.10(5), we have $S \subset x_i$. By Theorem 1.12, there exists a subnet T of S such that $T \xrightarrow{r} x_i$. Thus

$$x_t \in lim_t(T, r) \le \bigvee_{T \in \mathcal{H}} lim_t(T, r).$$

It is a contradiction for (V). Hence

$$\bigvee_{T \in \mathcal{H}} \lim_{t} (T, r) \geq c l u_{t}(S, r).$$

(3) From (III) of (1), we easily prove it.
$$\Box$$

Theorem 3.4 Let (X, t) be a smooth fuzzy topological space. Let S be a fuzzy net. If every subnet of S has a subnet which is r-convergent to μ , then $con_t(S, r) = \mu$.

Proof. Let $\mathcal{H} = \{T \mid T \text{ is a subnet of } S\}$. For each $T \in \mathcal{H}$, since T has a subnet K with $con_{\tau}(K, r) = \mu$, by Theorem 1.10(8), we have

$$\lim_{t} (T, r) \leq \lim_{t} (K, r) = c \ln_{t}(K, r) = \mu$$
.

Hence, by Theorem 3.3(2),

$$clu_{\tau}(S, r) = \bigvee_{T \in \mathcal{H}} lim_{\tau}(T, r) \leq \mu.$$
 (VI)

Conversely, by Theorem 1.10(10),

$$\mu = \lim_{r} (K, r) = clu_r(K, r) \le clu_r(T, r).$$

Hence, by Theorem 3.3(1),

$$\mu \leq \bigwedge_{T \in \mathcal{H}} clu_{\tau}(T, r) = lim_{\tau}(S, r).$$
 (VII)

By (VI) and (VII), $clu_t(S, r) \le lim_t(S, r)$. Since $lim_t(S, r) \le clu_t(S, r)$ from Theorem 1.10(2), $clu_t(S, r) = lim_t(S, r)$, that is, $con_t(S, r) = \mu$.

Example 3.5 We define a smooth fuzzy topology τ

as Example 2.6. Let N be a natural number set. Define a fuzzy net $S: N \rightarrow Pt(X)$ by

$$S(n) = x_{a_n}$$
, $a_n = 0.6 + (-1)^n 0.2$.

We can show $clu_{\tau}(S, 1/2) = \widetilde{1}$ from (1) to (2)

- (1) x_t for $t \le 0.7$ or y_s for $s \le 0.6$ is a fuzzy 1/2-cluster point of S because, for $\widetilde{1} \in \mathcal{M}(p, 1/2)$ with $p = x_t$ or y_s and for all $n \in \mathbb{N}$, we have $S(n) \neq \widetilde{1}$.
- (2) x_t for t > 0.7 or y_s for s > 0.6 is a fuzzy 1/2-cluster point of S because, for $\widetilde{1}$, $\mu \in \mathcal{M}(p, 1/2)$ with $p = x_t$ or y_s and for all $n \in \mathbb{N}$, there exists $2n \in \mathbb{N}$ such that $2n \ge n$, $S(2n) = x_{0.8} \ q \ \mu$.

We can show $\lim_{t \to \infty} (S, 1/2) = \widetilde{1} - \mu$ from (3) to (4).

- (3) x_t for $t \le 0.7$ or y_s for $s \le 0.6$ is a fuzzy 1/2-limit point of S because, for $\widetilde{1} \in \mathcal{M}(p, 1/2)$ with $p = x_t$ or y_s and for all $n \in \mathbb{N}$, we have $S(n) \neq \widetilde{1}$.
- (4) x_t for t > 0.7 or y_s for s > 0.6 is not a fuzzy 1/2-limit point of S because, for $\mu \in \mathcal{M}(p, 1/2)$ such that for all $n \in \mathbb{N}$, there exists $2n+1 \in \mathbb{N}$ such that $2n+1 \ge n$ and $S(2n+1)=x_{0.4}$ q μ .

Since $clu_{\tau}(S, 1/2) \neq lim_{\tau}(S, 1/2)$, S is not fuzzy 1/2-convergent.

In a similar method, we show for $0 \le r \le 1/2$,

$$\widetilde{1} = clu_t(S, r) \neq lim_t(S, r) = \widetilde{1} - \mu$$

and for r > 1/2,

$$\widetilde{1} = clu_{\tau}(S, r) = lim_{\tau}(S, r).$$

References

- [1] C. L. Chang, Fuzzy topological spaces, *J. Math. Anal. Appl.* Vol. 24, pp. 182-190, 1968.
- [2] K. C. Chattopadhyay and S. K. Samanta, Fuzzy topology, Fuzzy sets and Systems, Vol. 54, pp. 207-212, 1993.
- [3] S. L. Chen and J. S. Cheng, On convergence of nets of L-fuzzy sets, *J. Fuzzy Math.* Vol. 2, pp. 517-524, 1994.
- [4] S. L. Chen and J. S. Cheng, Semi-continuous and irresolute order-homomorphisms on fuzzes, Fuzzy sets and Systems, Vol. 64, pp. 105-112, 1994.
- [5] S. L. Chen and J. S. Cheng, θ-Convergence of nets of L-fuzzy sets and its applications, Fuzzy sets and Systems, Vol. 86, pp. 235-240, 1997.
- [6] M. Demirci, Neighborhood structures in smooth topological spaces, Fuzzy sets and Systems, Vol. 92, pp. 123-128, 1997.
- [7] D. N. Georgiou and B. K. Papadopoulos, Conver-

- gences in fuzzy topological spaces, Fuzzy sets and Systems, Vol. 101, pp. 495-504, 1999.
- [8] R. N. Hazra, S. K. Samanta and K. C. Chattopadhyay, Fuzzy topology redefined, *Fuzzy sets and Systems*, Vol. 45, pp. 79-82, 1992.
- [9] R. N. Hazra, S. K. Samanta and K. C. Chattopadhyay, Gradation of openness: Fuzzy topology, *Fuzzy sets* and *Systems*, Vol. 49(2), pp. 237-242, 1992.
- [10] Y. C. Kim and Y. S. Kim, Fuzzy r-derived sets in fuzzy topological spaces, J. Fuzzy Logic and Intelligent Systems, Vol. 9(6), pp. 644-649, 1999.
- [11] Y. C. Kim and Y. S. Kim, Fuzzy r-cluster and fuzzy r-limit points, Kangweon-Kyungki *Math. J.* Vol. 8(1), pp. 63-73, 2000.
- [12] Liu Ying-Ming and Luo Mao-Kan, Fuzzy topology, World Scientific Publishing Co., Singapore, 1997.
- [13] Pu Pao-Ming and Liu Ying-Ming, Fuzzy topology I; Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. Vol. 76, pp. 571-599, 1980.
- [14] A. P. Sostak, On a fuzzy topological structure, Rend. Circ. Matern. Palermo Ser.II, Vol. 11, pp. 89-103, 1985.
- [15] Wang Guo-Jun, Pointwise topology on completely distributive lattices, *Fuzzy sets and Systems*, Vol. 30, pp. 53-62, 1989.

김용찬 (Yong-Chan Kim)

1982년 : 연세대학교 수학과(이학사) 1984년 : 연세대학교 대학원 수학과

(이학석사)

1991년 : 연세대학교 대학원 수학과 (이학박사)

1991년~현재:강릉대학교수학과부교수

관심분야: Fuzzy Topology

김 영 선 (Young-Sun Kim)

1981년 : 연세대학교 수학과(이학사)

1985년 : 연세대학교 대학원 수학과

(이학석사)

1991년 : 연세대학교 대학원 수학과

(이학박사)

1989년~현재 : 배재대학교전산정보수학 전공 부교수

관심분야 : Fuzzy Topology