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ABSTRACT

In this paper, we investigate some properties of fuzzy r-cluster points and fuzzy r-limit points in smooth
fuzzy topological spaces. We define fuzzy r-convergent nets and investigate some of their properties.

1. Introduction and preliminaries

Pu and Liu [13] introduced the notions of Q-
neighborhoods and fuzzy nets Q-neighborhoods and
established the convergence theory in fuzzy topological
spaces. Chen and Cheng [3] introduced the concepts of
fuzzy clusterand fuzzy limit points in fuzzy topological
spaces with respect to R-neighborhoods instead of Q-
neighborhoods. The convergence theory in fuzzy
topological spaces has been developed in many
directions [4,5,7,15]. A.P. Sostak [14] introduced the
smooth fuzzy topology as an extension of Chang's fuzzy
topology [1]. In [11], it was introduced the concepts of
fuzzy r-cluster and fuzzy r-limit points in smooth fuzzy
topological spaces.

In this paper, we investigate some properties of fuzzy
r-cluster points and fuzzy r-limit points in smooth fuzzy
topological spaces. We define fuzzy r-convergent nets
and investigate some of their properties.

Throughout this paper, let X be a nonempty set, /=0,
1] and I,= (0, 1]. A fizzy point x, for t< 1, is an element
of & such that, for y€X,

tify=x,

0 ={0 if yx.

The set of all fuzzy points in X is denoted by P#(X).
For x, EPX), x, €A iff t<A(x). For A, uEF, 1 is
quasi-coincident with y, denoted by A g y, if there
exists X such that A(x) + pi(x) > 1. If A is not quasi-
coincident with y, we denote A ¢ L.

All the other notations and the other definitions are
standard in fuzzy set theory. ’

Lemma 1.1 [12] Letf: X—Y be a function. Let A,
U, p, AEF for each i€I, x,EP«X) and VEI". Then
the following properties hold:

() If A q uand u<p, then 1 g p.

2) x, q Ver A, iff there exists jE I such that x, ¢ 4.

() A< iff x,Ep for all x, EA iff x, ¢ A implies x, g 1.
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Definition 1.2 [14] A function 7: F—1 is called a
smooth fuzzy topology on X if it satisfies the following
conditions; . .

(O1) €0)=1(1)=1, where 0(x)=0and 1(x)=1 for
all x€X.

(02) Wn A )2 W) A y), for any i, 1 EF.

(03) AV jer )= N er qu), for any {p},er”F.

The pair (X, 7) is called a smooth fuzzy topological
space. .

Theorem 1.3 [2] Let (X, 7) be a smooth fuzzy
topological space. For each r€], and ASF, we define
a fuzzy closure operator C,: F}X[;—F as follows:

CdA, = NpEF | A<p, (1 -p)=r}.

For A, uEX and r, s€1, it satisfies the following
properties; -

(1) C(0, ) = 0.

@) 2<CAA 1.

3) C{A AV Clly 1)= CAV L, 7).

(4) C{A, N<CAA, s, if r<s.

(5) CLCAA, 1), N=CdA, 7).

Definition 1.4 [6] Let (X, 7) be a smooth fuzzy
topological space, HEF, x,EPHX) and rEl,.  is
called a r-open Q-neighborhood ofx, if x, ¢ 4 with (1)
2r.

We denote

Mo, r)z{,uEIX | x, q U, qy=ri.

Definition 1.5 [10] Let (X, 7) be a smooth fuzzy
topological space, AEF, x, EPIX) and rEl,. x, is
called a fuzzy r-adherent point of A if for every u<
Mx,, ¥), we have £ g A

Theorem 1.6 [10] Let (X, 7) be a smooth fuzzy
topological space. For each AEF and r&1,, we have

CAA, N=V {x,€PX) | x, is a fuzzy r-adherent point
of A}.
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Definition 1.7 [13] Let D be a directed set. A
function S: D—>PHX) is called a fuzzy net. Let AS K.
We say S is a fuzzy net in A if S(n)E A for every n€D.
A fuzzy net S is increasing(resp. decreasing) if S(m)<
S(n) (resp. S(n)<S(m)) for every m=<n with m, nED.

Definition 1.8 [11] Let (X, 7) be a smooth fuzzy
topological space, UEF, x,EP«X) and r<J,.

(1) x, is called a fuzzy r-cluster point of S, denoted by
Sco x,, if for every uEMx, ), S is frequently quasi-
coincident with g, that is, for each nE D, there exists r,
€D such that ny=n and S(ny) g L.

(2) x.is called a fuzzy r-limit point of S, denoted by S
5 x, if for every uEMx, r), S is eventually quasi-
coincident with 4, that is, there exists 7, D such that
for each n€D with n=n,, we have S(n) q L.

We denote

cluS, =V {x,EP(X) | x, is a fuzzy r-cluster point
of S},

limdS, r)=V {x, EP{X) | xis a fuzzy r-limit point
of §}.

Definition 1.9 [13] Let S: D—P{X) and T : E—
P1X) be two fuzzy nets. A fuzzy net T is called a
subnet of § if there exists a function N ;: E—D, called
by a cofinal selection on S, such that

(1) T=§ oN;

(2) For every ny&D, there exists my&E such that
Nn)=ny for m=my.

Theorem 1.10 [11] Let (X, 7) be a smooth fuzzy
topological space. Let S : D—P(X) be a fuzzy net and
T E—PtX) a subnet of S. For r, s€ 1, the following
properties hold:

(1) If S5 x, then S o x,.

) limAS, N=<clulsS, r).

(3) If Sco x, and x,=x,,

(@) If S5 x, and x,=x,,

(5) S o x, iff x,Ecluls, r).

6) 85 x, iff x,Elim/S, 7).

(7 If S5 x, then TS x,.

®) lim{S, n=<Iim(T, r).

(9) If Too x,, then S oo x,.

(10) cludT, Hn<cluls, r).

B
then S co x,.
then S5 x,.

Theorem 1.11 [11] Let (X, 7) be a smooth fuzzy
topological space and x,=P#X) and »€,. For every
fuzzy net S, S 5 x, iff T oo x,, for every subnet T of S.

Theorem 1.12 [11] Let (X, 7) be a smooth fuzzy
topological space and x,EPHX) and rE1,. For every
fuzzy net S : D—PH(X), S <o x,iff S has a subnet T such
that 75 x,.
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Theorem 1.13 [11] Let (X, 7) be a smooth fuzzy
topological space and x, EP#X) and » €l;,. Then the
following statements are equivalent.

(1) xECL4, 7).

(2) There exists a fuzzy net SEA such that S o x,.

(3) There exists a fuzzy net SE4 such that §-5 x,.

2. The properties of fuzzy r-cluster and
fuzzy r-limit points

Theorem 2.1 Let (X, 7) be a smooth fuzzy
topological space and S : D—P«(X) a fuzzy net. For r&
I, the following properties hold:

(1) CLclufS, r), ) = clulS, r).

Q) cludS, NECLV nep Sm), 7).

Proof. (1) From Theorem 1.3(2), we have
CdcludS, r), N=cludS, r).

Suppose C{cludS, r), )% clu(S, r). From Theorem
1.6, there exists a fuzzy r-adherent pointx, of clu (S, r)
such that

CletufS, v), NE)=t> clulS, rix).

Since x, is a fuzzy r-adherent point of clu/(S, r), for
each u=Mx, r), we have

H g clufS, r).

Since ft g clu(S, r), there exists yEX such that

M) + cludS, N> 1.

From the definition of clu (S, r), there exists a fuzzy
r-cluster point y, of S such that

HB) +cludS, NO)Zup) +p> 1.

Thus € My, ¥). Since S o y, and LE My,, 1), for
each n €D, there exists 1y D such that n,=>n and S(ne)
q W Hence x, is a fuzzy r-cluster point of S. So, clu (S,
r)(x)=t It is a contradiction. Hence

ClclufS, r), n<cluls, r).

(2) Suppose cludS, r) £ CL V ,epS(n), r). Then there
exists a fuzzy r-cluster point x, of S such that

clufS, NE)=t>CLV ,ep Sn), P)). 48}

"Since x, is a fuzzy r-cluster point of S, for each <
Mo, 1), for each nED, there exists ny=n with S(ng) q
. Since S(n)< V ,ep S(n), by Lemma 1.1(1), we have
V ep S(n) q 1. Hence x, is a fuzzy r-adherent point of
V ,ep S(n). Therefore C(V ,ep S@), N(x)=t. It is a
contradiction for (I). Hence

chifS, NECLV nep S), 7). O
Theorem 2.2 Let (X, 7) be a smooth fuzzy
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topological space and S, U : D—>PHX) fuzzy nets such
that S(n) V U(n), S(n) \U(n) EPHX) for each nE€D.
Define fuzzy nets SV U, SAU : D—P1(X) by, for each
neb,

(SV UYn)y=S(n)V Un), (SAUYn)=S(n)AU(n).

For each r&1, the following properties hold:
(1) If Sx)<U(n) for all n<ED, then

clulS, N<chu U, r), lim{S, n<lim{U, r).

(2) clufSV U, ry=cludS, r)V clufU, r).

(B) clu{SAU, n=clufS, r)NclufU, r).
@) limSV U, N=<Ilim(S, r)Viim{U, r).
) limSAU, nN=<lim{S, NN\lim{U, r).

Proof. (1) Let x, is a fuzzy r-cluster point of S. For
each UEMx, r) and for each nED, there exists ny&
D such that ny=n and S(ny) g p. Since S(n)< U(n) for
all nED, by Lemma 1.1(1), U(n,) ¢ 1. Thus x, is a
fuzzy r-cluster point of U. Hence cludS, n<clu{U, r).

Similarly, we have lim(S, r)<lim{U, r).

(2) Since S<SAU and T<SV U, by (1), we have

cludSV U, ry=clulS, vV clulU, r).

Suppose clu{SV U, r) % clufS, )V clu U, r). Then
there exists a fuzzy r-cluster pointx, of SV U such that

clu{SV U, n(x)=t>clulS, rx)V clulU, r)(x).

Hence x, & cluS, ) and x, & clufU, r).

Since x, is not a fuzzy r-cluster point of S, there exist
W EMx,, r) and n €D such that S(n) g y, for every n
D with nan.

Since x, is not a fuzzy r-cluster point of U, there exist
W E Mx,, ) and n, & D such that U(r) q w, for every n
€D with n=n,.

Let pt= p; AW, and ny €D such that n;2n, and n; =
ny. Since gy <1 — S(n) and @, <T — U(n) for n=n;, we
have i A <1 — (S(n) VvV Un)). So, UEMx,, ) and n;
€D such that (SV U)(n) g u for every n&D with n=>
n3. Thus x, is not a fuzzy r-cluster point of SV U. It is
a contradiction. Hence we have

cu SNV U, n<clulS, )V clulU, r).
(3),(4) and (5) are easily proved.

Theorem 2.3 Let (X, 7 be a smooth fuzzy
topological space and S : D—Py(X) a fuzzy net. Then
we have

clu,(S, r) = /\ nQEDCt( \/nzno S(n): }").

Proof. Let x,Sclu/S, r). From Theorem 1.10 (5),
since x, is a fuzzy r-cluster point of S, for each 4& Mx,,
#) and for each nyED, there exists # =D such that n=>
ny and S(n) g w. Since S(n)< \/,,2,10 S(n), by Lemma

1.1(1), we have V=, S(n) g p. Hence x, is a fuzzy r-
adherent point of \/,,ZHOS(n), for all ny&D, that is,

x,E /\,,OEDC,( V oy S(), 7).

From Lemma 1.1 (3), we have

cludS, NS N 0enCA V2 S(), 7).

Suppose

cludS, r) /\,,Oegcf( Vouzn, SO, 7).

There exists a fuzzy r-adherent pointx, of \/,,2,,0 S(n),

for all n,&€D, such that
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clu (S, rx)<t<CY \/,12,10 S(n), #)(x).

Since x, is a fuzzy r-adherent point of V,, 2y S(n), for
each n €D, for each uEMx, r), we have

vn2n0 S(}'l) q lu
Since V2, 8(n) ¢ 4, there exists yEX such that

Vozn SE0) + 1) > 1.

Then there exists nED such that n=n, and

V2 SO + ) 2 S()) + () > 1.

It implies S(n) g 1. Hence x, is a fuzzy r-cluster point
of S, that is,

xEclulS, r).

It is a contradiction. Hence

cludS, N N ep CALV 2y S@), 1. 0

Theorem 2.4 Let (X, 7) be a smooth fuzzy
topological space and S : D—Py(X) a fuzzy net. For r&
I, the following properties hold:

(D) CLlim (S, »), v) = lim{S, ).

) N,ep Sm)<lim(S, r).

B) Vuwen(Non SO <lim(S, r).

Proof. (1) It is similarly proved as Theorem 2.1(1).

(2) Suppose /\ ,ep S(n) £ lim{S, r). Then there exist
x€X and t<1, such that

Nep S()x)>t> limdS, r)(x).

Since ¢ > lim (S, r)(x), by Theorem 1.10(6), x, is not a
fuzzy r-limit point of S. So, there exists 4& Mx,, r) such
that for each nED, there exists nyE D satisfying ny=
n and pu q S(ng). Since x, g y, we have

S(no)x) + 1 -t <S(no)x) + px)=1.

Thus S(ne)(x) <t implies N\ ,cp S)(X)<t It is a
contradiction. Hence we have

N,en S(m)<Ilim{S, r).

(3) Suppose V,yep (/\ 24y S(n)) £ lim(S, ). Then
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there exist a x€X and tE1, such that
Vo= (N w2y SED)X) > 1> limdS, ().

Since 1<V, ep(/\ s SM)X), there exists nyED
such that

X< N nzny S(n).

It implies ¢ < S(n)(x) for all n=n,. Hence for each u
EMx, r), t+ u(x) > 1 implies S(n)(x) + p(x) > 1, for all
n=n, So, x, is a fuzzy r-limit point of S. It is a
contradiction. Hence we have

Vooen (A pang SO)<limS, 7). g

Example 2.5 Let X= {a, b} be a set, N a natural
number set and 4EF as follows:

a)=03, pb)=04.

We define a smooth fuzzy topology 7 : X1 as
follows:

1,if 7»=(~) or i,
()= % ifA=p,
0, otherwise.

(1) In general, clufS, r) # C{ V,epS(n), r).
Define a fuzzy net S : N—P#(X) by :

S(n) = Xop An= 0.6 +0.2/n.

Then V,ey S(11) =x,5. From Theorem 1.3, we have
for all r&i,

Cixog, = 1.

But x5 is not a fuzzy 1/2-cluster point of S, because
there exist U Mxos, 1/2) and 2&N, for all n=2, we
have S(n) g u. It follows

clugS, 1/2)(x)<0.8 but C{ V,ecpS(n), 1/2)(x)=1.

(2) In general, clu{SAU, r)# clulS, Y NclulU, r).

Define fuzzy nets S, U : N=>PyX) by

S(n) = xa, a,=0.8+(-1)"0.2.

U(n) = xs, b,=0.8+(-1)""10.2.

From Theorem 2.2, (SAU)(n) =xy¢is a fuzzy net.
For u&Mxgs, 1/2) and for all n €N, we have (SA
U)(n) q u. Thus xgg is not a fuzzy 1/2-cluster point of
SAU. _

On the other hand, for 1, u& Mx,s, 1/2) and for each
n&N, there exists 2n=n such that S(2n) g y and there
exists 2nt1=n such that U22n+1) g w. It implies

X8 EclulS, 1/2), xosSclulU, 1/2).

Hence we have

516

cludSAU, 1/2)x)<0.8=<cludS, 1/2)(x)

NeluU, 1/2)(x).

(3) In general, lim SV U, r) # lim{S, r)V lim{U, r).

Define fuzzy nets S, U : N—2P{X) by

S(n) =xa, a,= 0.6 + (-1)"0.2.

U(n) = xs, b,=0.6+(-1y"10.2.

From Theorem 2.2, (SV U)(n) = xo5 is a fuzzy net.

For 1, uEMxos, 1/2) and for each n€EN, (SV U)n)
g uand (SVU)(n) g 1. Hence xy; is a fuzzy 1/2-limit
point of SV U.

On the other hand, for £& Mx,g, 1/2) and for each n

€N, there exists 2n+1=n such that S2n+1) ¢ u and
there exists 2n=n such that U(2n) g p. Thus

Xo8 & llm,(S, 1/2), X0.8 & llmr(U, 1/2)
So,

Im SV U, 1/2)(x)=0.8>lim (S, 1/2)(x)
Viim{U, 1/2)(x).

(4) In general, N ,ep S(n)#limAS, r) and
ngED (/\nZnO S(n))#llmr(ss r)'

Define a fuzzy net S : N—>PiX) by

S(n) =%, a,= 0.8+ (-1°0.2.

<

Then we have

Nuep S(n)= vnoED(An2n0 S(n)) = xo.

Then x,, is a fuzzy 1/2-limit point of S, forNTE
Mxps, 1/2) and for all nEN, we have S(n) g 1.

lim (S, 1/2)(x)=0.7.

Hence

Anep S0)= Vgen (/N 1 SE)# limS, 112).

Theorem 2.6 Let (X, 77 be a smooth fuzzy
topological space and S : D—PHX) a decreasing fuzzy
net. Then, for each r&J;, we have

cludS, = /\ .ep C{S(n), 7).

Proof. Suppose

cludS, HE N,ep CLS(), 7.

There exists a fuzzy r-cluster pointx, of S such that
cludS, r)E)=t>/N\ ,epCASn), r)(x).

Since x, is a fuzzy r-cluster point of S, for each u&
Mx,, ) and n€D, there exists ny<=D such that ny=n
and S(ng) g p. Since S is a decreasing fuzzy net, for n,
=pn, by Lemma 1.1(1), S(ny) g u implies S(n) g u.
Hence x, is a fuzzy r-adherent point of S(n), for each »
€D, that is,
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%E N ep CLS(), 7).

It is a contradiction. Hence
cludS, =N ,ep CLS(n), ).
Suppose

cludS, ) & /\ ,ep CAS(n), 7).
There exists x€X such that
cludS, Nx)< N,ep CLS(), r)x).

There exists a fuzzy r-adherent pointx, of S(n), for all
nE€D, such that

cludS, PYx)<t< N ,epCdS(n), ().

Since x, is a fuzzy r-adherent point of S(x), for all n
€D, for each uE Mx,, r) and for nE D, there exists n
€D such that n=>n and S(n) ¢ 1. Hence x, is a fuzzy r-
cluster point of S, that is,

xEclulS, r).
It is a contradiction. Hence

cludS, N=/N,ep CLS(n), r). O

Theorem 2.7 Let (X, ©) be a smooth fuzzy
topological space and S : D—P#(X) an increasing fuzzy
net. Then, for each r&1, we have

lim S, V=CLV ep S, 7).

Proof. Suppose

lim(S, ©) £CAV ,ep S(n), 7).

There exists a fuzzy r-limit point x, of S such that

limdS, NEX)=CLV ,ep Sn), HX).

Since x, is a fuzzy r-limit point of S, for each u&
Mx,, 7), there exists 7, D such that for all n=n,, S(n)
g u. It implies V<, S(n) g p. Hence x, is a fuzzy 1-
adherent point of V,cp S(n). It is a contradiction,
Hence

limdS, N<CLV ep S(n), 7).
Suppose
lim(S, ©) 2CLV ,ep Sn), 1)

There exists a fuzzy r-adherent pointx, of V ,ep S(n)
such that

limAS, Px) <t<CA V,ep S(), PX).

Since x, is a fuzzy r-adherent point of V,ep S(), for
each uEMx, r), we have V ,cp S(n) g 1. By Lemma
1.1(2), there exists n, <D such that S(ng) g u. Since S is
an increasing fuzzy net, forn=ny, S(n,) g ¢ implies S(r)
q U Hence x, is a fuzzy r-limit point of S, that is,

xElim S, r).
It is a contradiction. Hence

limdS, N=CLV ,ep S), r). O

Definition 2.8 Let (X, ) and (¥ 7) be smooth
fuzzy topological spaces. A functionf: (X, 7))—=(¥, 1)
is fuzzy continuous if for all vEL, 1(f(v))= (V).

Theorem 2.9 Let (X, 7)) and (¥, %) be smooth
fuzzy topological spaces. For every fuzzy net S, xS
P(X), r €I, and AEF, the following statements are
equivalent.

) f: X 5~ w) is fuzzy continuous.

() If S x, then fS) cofix).

(3) If S5 x, then f(S) 5 fix).

@) ACy(A M=Cx(fA), ).

Proof. (1)=(2) Let uE Mfx),, r). Since f is fuzzy
continuous, then 7(f () =n() =7 and fix), ¢ u
implies x, ¢ £1(1t) from Lemma 1.1(4). Hence /()€
Mpx,, r). Since Sdo x,, for £1(1)E Mx,, r) and for each n
€D, there exists n, D such that ny=n and S(ny) g 1
(1). By Lemma 1.1(4), it implies f{S{n,)) g u. Hence
A8)co fx).

(2)=(3) Let S5 x,. Every subnet U : E—>P((Y) of
fS), there exists a cofinal selection N : E—D such that
U=A(S) oN=fo(S oN). Put 7=S oN. Then T is a subnet
of S. We can prove it from the followings:

Shx= T x (by Theorem 1.10(7))

= Tco X, (by Theorem 1.10(1))
= AD=Uco fx), (by (2))
= f8)co fx),. (by Theorem 1.11)

(3)=>(4) Suppose there exist A and r&1; such that
ACo(A, V) £ CoffiA), 7).

Then there exists y&7Y such that
AC(A, NEP>Co(flA), NB).

So, there exists x&f () such that
ACo(A, N)3)2Cr(A, NEP>CofflA), HB).

From Theorem 1.6, there exist a fuzzy r-adherent
point x, of A on (X, 7)) such that

Cu(A, NE)ZCo(flA), N(fx)).
Since x,E Cr (4, r), by Theorem 1.13, there exists a

an

- fuzzy net S&E A such that §Zs x,. By (3), AS)5 fix), with
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AS) in AA). From Theorem 1.13, we have fx),=y,&
Co(f(A), ). It is a contradiction for (I[). Hence, for all 4
€F and r&1, we have

ACq(A M=Cof(ftd), 7).
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@=(1) It is similar to Theorem 2.12 of [10]. [J
From Theorem 2.9, we can easily obtain the
following corollary.

Corollary 2.1¢ Let (X, 7) and (¥, ) be smooth
fuzzy topological spaces. For each fuzzy netS, A€
and r&1,, the following statements are equivalent.

) f: X, ), ) is fuzzy continuous.

(2) felua(S, N)=clus(f(S), 7).

3) flim: (S, r)<lim(fS), 7).

@) ACo (A, M=CofD), 1.

3. Fuzzy r-convergent nets

Definition 3.1 Let (X, 7) be a smooth fuzzy
topological space, uEF, x,EP«X) and rE1,. A fuzzy
net S is said to be fuzzy r-convergent to U, denoted by
confS, r)=pu, if clufS, r)=1limdS, ry=u.

Theorem 3.2 Let (X, 7 be a smooth fuzzy
topological space and S, U : D—PHX) fuzzy r-
convergent nets such that S(z) V U(n) € Pi(X) for each n
€D. Then for each r&li,,

con{SV U, ry=con(S, r)V con U, r).

Proof. From Theorem 2.2, SV U is a fuzzy net. We
easily proved it from the followings:

clulSV U, ry=clufS, nVclu{U, r)
(by Theorem 2.2(2))
(since S and U are fuzzy r-convergent nets,)

= lim{S, NViim{U, r)

<Ilim{SV U, r) (by Theorem 2.2(4))
<ch SV U, r). (by Theorem 1.10(2))
]

Theorem 3.3 Let (X, 7) be a smooth fuzzy
topological space. Let S be a fuzzy net and %= {T | T
is a subnet of S}. Then the following statements hold:

Q) limdS, =/ rey cludT, 1.

Q) cludS, 1=V rey limT, 7).

(3) If condS, r)=u, then con(T, r)=u for each TE %,

Proof. (1) For each T&#, by Theorem 1.10
(2,8,10), we have

limdS, V<lim(T, N<clu(T, N<clulS, r). D

Hence

limdS, < N\ req cludT, 1.

Suppose

limdS, V) E N ey cludT, ).

Then there exist x&X and #</, such that

limdS, P)(x)<t< /ey clulT, ©)). 1)

Since limAS, r)(x) < ¢, by Theorem 1.10(6) , x, is not
a fuzzy r-limit point of S, that is, there exists < Mx,
r) such that for each n& D there exists N(r) €D with for
N(m)=n and S(M(n)) q 1. Hence there exists a cofinal
selection N : E—D such that 7=S ©N. Thus 7'is a subnet
of S. Moreover, x, is not a fuzzy r-cluster point of 7. By
Theorem 1.10(5), clufT, r)(x)<t. It is a contradiction
for (IV). Hence

limdS, r)= /ey cludT, r).

(2) From (IIf) of (1), we have

V res limdT, N<cludS, 7).

Suppose

V res limdT, NE clulS, 7).

Then there exist x€X and t&1]; such that

V reg limT, P)(x) <t<clufS, r)x). V)

Since x,EcluS, r), by Theorem 1.10(5), we have §
& x.. By Theorem 1.12, there existsa subnet T of S such
that 7% x,. Thus

X ElimAT, V<V rey limdT, 7).

It is a contradiction for (V). Hence

V rex lim AT, r)=cludS, r).

(3) From (IMl) of (1), we easily prove it. O

Theorem 3.4 Let (X, 7) be a smooth fuzzy
topological space. Let S be a fuzzy net. If every subnet

of S has a subnet which is r-convergent to u, then
con{S, r=(.

Proof. Let 7= {T | Tis a subnet of S}. For each T
€49 since T has a subnet K with con K, r)=u, by
Theorem 1.10(8), we have

lim{T, N<Ilim{K, r)=clu(K, r=u.

Hence, by Theorem 3.3(2),

cludS, 1=V rexlim{T, <y D
Conversely, by Theorem 1.10(10),

u=lmfK, ry=clu K, r)<clulT, r).

Hence, by Theorem 3.3(1),

US N ey clulT, r=limdS, 7). (VD

By (VI) and (VII), clu{S, r) < lim,(S, r). Since lim S,
r)=<clufS, r) from Theorem 1.10(2), cluS, r)=lim{S,
r), that is, condS, r)=u. O

Example 3.5 We define a smooth fuzzy topology ©
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Fuzzy r-convergent nets

as Example 2.6. Let N be a natural number set. Define
a fuzzy net § : N—=>PyX) by

S(n) = Xap, An= 0.6+ (‘1)"02

We can show clu (S, 1/2)=T from (1) to (2)

(1) x, for t<0.7 or y, for s<0.6 is a fuzzy 1/2-cluster
point of § because, for 1EMp, 1/2) with p=x, or y;
and for all nEN, we have S(n) q 1.

(2) x, for £> 0.7 or y, for s > 0.6 is a fuzzy 1/2-cluster
point of S because, for 1, uE Mp, 1/2) with p =x, or ,
and for all nEN, there exists 2nEN such that 2n=n,
S(2n)=x0,3 q H. -

We can show lim(S, 1/2)=1 —u from (3) to (4).

(3) x, for t<0.7 or y, for s<0.6 is a fuzzy 1/2-limit
point of § because, for 1EMp, 1/2) with p=1x, or y,
and for all nEN, we have S(n) ¢q 1.

(4) x, for t>0.7 or y, for s> 0.6 is not a fuzzy 1/2-
limit point of S because, for u& Mp, 1/2) such that for
all nEN, there exists 2n+1EN such that 2n+1 =# and
S2n+1)=xy4 q U

Since clu{S, 1/2)#limS, 1/2), S is not fuzzy 1/2-
convergent.

In a similar method, we show for 0<r<1/2,

1 = cludS, H#limdS, H=1 - u
and for r>1/2,

1= clufS, r=lim(S, r).
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