A Neuro-Fuzzy Model Optimization Using Rough Set Theory

러프 집합이론을 이용한 뉴로-퍼지 모델의 최적화

  • 연정흠 (중앙대학교 전자전기공학부) ;
  • 서재용 (중앙대학교 전자전기공학부) ;
  • 김용택 (중앙대학교 전자전기공학부) ;
  • 조현찬 (중앙대학교 전자전기공학부) ;
  • 전홍태 (중앙대학교 전자전기공학부)
  • Published : 2000.06.01

Abstract

This paper presents an approach to obtain a reduced neuro-fuzzy model for a plant. The Neuro-Fuzzy Network are compose of the Radial Basis Function Networks with Gausis membership and learned by using temporal back propagation. The dependency in rough set theory is used to eliminate rules. Dependency between the condition membership value of each rule in a model and the output of the plant can allow us to see how much contribution the rule is to identify the plant. While the reduced model maintains the same performance as the original one, the selection algorithm can minimize its complexity and redundancy of the structure.

본 논문에서는 플랜트를 위한 규칙수가 줄어든 뉴로-퍼지 모델을 얻기 위한 접근을 제안한다. 뉴로-퍼지 네트워크는 가우시안 소속함수를 가진 RBF(Radial Basis Function) 네트워크들로 구성되고 오차 역전파 학습 알고리듬에 의해 학습된다. 러프 집합 이론에서 의존도는 규칙들으 줄이는데 사용된다. 모델에서 각 규칙이 조건 소속함수 값과 플랜트의 출력 값 사이의 의온도는 플랜트를 동정하기 위하여 규칙이 얼마나 많은 공헌을 하는가를 알 수 있도록 한다. 줄어든 모델은 원래의 것으로써 동일한 성능을 유지하는 동안 선택 알고리듬은 복잡성과 구조의 잉여성을 최소화할 수 있다.

Keywords

References

  1. IEEE Trans. Neural Networks v.3 no.5 On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm S. Horikawa;T. Furuhashi;Y. Uchikawa
  2. IEEE Trans. Syst. Man, Sybern. v.26 no.2 Simplification of Fuzzy-Neural System Using Similarity Analysis C.T. Chao;Y.J. Chen;C.C. Teng
  3. IEEE ICNN v.4 no.4 A neuro-fuzzy model reduction strategy G. Castellano;A.M. Fanelli
  4. IEEE Trans. Syst., Man, Cybern. v.20 no.2 Fuzzy logic in control systems : Fuzzy logic controller-Part Ⅰ&Ⅱ C.C. Lee
  5. IEEE Trans. Neural Networks v.1 no.1 Identification and Control of Dynamical Systems Using Neural Networks Kumpati S.;Narendra. K.;Pathasarathy
  6. IEEE International Conference on Systems Why Rough Sets? Zdzislaw Pawlak
  7. IEEE International Conference on Systems v.1 no.5 Rough Sets as a Tool in Data Engineering F.B., Maria;G.M., Angel;P.L., Concepcion
  8. Fuzzy Sets and Systems v.17 Rough sets and Fuzzy Sets Pawlak, Z.
  9. Rough sets : Theoretical Aspects of Reasoning about Data Pawlak, Z.
  10. Pro. of KFIS Fall conf. '96 v.6 no.2 Extraction of Fuzzy Rules from Data using Rough Set C. Young wan
  11. IEEE Trans. Neural Networks v.2 no.2 Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks S. Chen;C.N. Cowan;P.M. Grant
  12. Neural Networks for Optimization and Signal Processing A. Cichocki;R. Unbehauen
  13. IEEE Trans. Neural Networks v.8 no.2 Using wavelet network in nonparametric estimation Qinghua Zhang