References
- Ann. Sci. Quebec v.19 On generalized variational-like inequalities Q.H. Ansari
- J. pure appl. Math. v.28 no.3 Generalized variational type inequality in Hausdorff topological vector spaces Indian A. Behera;G.K. Panda
- Fuzzy Sets and Systems v.61 Coincidence theorems and variational inequalities for fuzzy mappings S.S. Chang
- Fuzzy Sets and Systems v.87 Vector quasivariational inequalities for fuzzy mappings (Ⅰ) S.S. Chang;G.M. Lee;B.S. Lee
- Fuzzy Sets and Systems Vector quasivariational inequalities for fuzzy mappings (Ⅱ) S.S. Chang;G.M. Lee;B.S. Lee
- Fuzzy Sets and Systems v.32 On variational inequalities for fuzzy mappings S.S. Chang;Y.G. Zhu
- J. Math. Anal. Appl. v.153 Vector complementarity problems and its equivalences with weak minimal element in ordered spaces G.Y. Chen;X.Q. Yang
- Math. Ann. v.142 A generalization of Tychonoff's fixed point theorems K. Fan
- Bull. Austral. Soc. v.46 A variational inequality in non-compact sets and its applications W.K. Kim;K.K. Tan
- Appl. Math. Lett. v.9 Convexity for set-valued maps D. Kuroiwa
- J. Math. Anal. Appl. v.97 On the use of KKM multifunctions in fixed point theory and related topics M. Lassonde
- A fuzzy extension of Siddiqi et al.'s results for vector variational-like inequalities, submitted Byung Soo Lee;Doo Young Jung
- Proceedings of Fifth International Fuzzy Systems Association World Congress A variational inequality for fuzzy mappings B.S. Lee;G.M. Lee;S.J. Cho;D.S. Kim
- J. Korean Math. Soc. v.33 Generalized vector-valued variational inequalities and fuzzy extensions B.S. Lee;G.M. Lee;S.J. Cho;D.S. Kim
- Indian J. pure appl. Math. v.28 Generalized vector variational-like inequalities on locally convex Hausdorff topological vector spaces B.S. Lee;G.M. Lee;S.J. Cho;D.S. Kim
- Appl. Math. Lett Vector variational-type inequalities for set-valued mappings Byung Soo Lee;Suk Jin Lee
- Fuzzy Sets and Systems v.78 Strongly quasivariational inequalities for fuzzy mappings G.M. Lee;D.S. Kim;B.S. Lee
- Nonlinear Analysis Forum v.4 Vector variational inequalities for fuzzy mappings G.M. Lee;D.S. Kim;B.S. Lee
- Appl. Math. Lett v.6 Generalized vector variational inequality and fuzzy extension G.M. Lee;D.S. Kim;B.S. Lee;S.J. Cho
- Indian J. pure appl. Math. v.28 On vector variational inequalities for multifunctions G.M. Lee;B.S. Lee;D.S. Kim;G.Y. Chen
- Lecture Notes in Economics and Mathematical Systems v.319 Theory of Vector Optimization D.T. Lu
- Nonlinear Analysis T.M.A. v.18 A saddle point theorem for set-valued maps D.T. Luc;C. Vargas
- Fuzzy Sets and Systems v.55 Variational inequalities for fuzzy mappings (Ⅰ) N.A. Noor
- Internat. J. Math & Math. Sci. v.21 no.4 A general vector-valued variational inequality and its fuzzy extension S. Park;B.S. Lee;G.M. Lee
- J. Math. Anal. Appl. v.108 Generalized quasi variational inequalities in locally convex topologicial spaces M.H. Shih;K.K. Tan
- Indian J. pure appl. Math. v.28 no.8 On vector variational-like inequalities A.H. Siddiqi;Q.H. Ansari;R. Ahmad
- J. Optim. Th. Appl. v.84 On vector variational inequalities A.H. Siddiqi;Q.H. Ansari;A. Kahliq
- J. Math. Soc. Japan. v.28 Nonlinear variational inequalities and fixed point theorems W. Takahashi
- J. Math. Econom v.12 Existence of minimal elements and equilibria in linear topological spaces N.C. Yannelis;N.D. Prabhakar
- Pacific J. Math. v.97 A minimax inequality and its applications to variational inequalities C.L. Yen