On vector variational-type inequalities for fuzzy mappings

  • Published : 2000.04.01

Abstract

In this paper we introduce vector variational-type inequalities for fuzzy mappings on Hausdorff topological vector spaces and obtain an existence theorem of solutions to the inequalities.

Keywords

References

  1. Ann. Sci. Quebec v.19 On generalized variational-like inequalities Q.H. Ansari
  2. J. pure appl. Math. v.28 no.3 Generalized variational type inequality in Hausdorff topological vector spaces Indian A. Behera;G.K. Panda
  3. Fuzzy Sets and Systems v.61 Coincidence theorems and variational inequalities for fuzzy mappings S.S. Chang
  4. Fuzzy Sets and Systems v.87 Vector quasivariational inequalities for fuzzy mappings (Ⅰ) S.S. Chang;G.M. Lee;B.S. Lee
  5. Fuzzy Sets and Systems Vector quasivariational inequalities for fuzzy mappings (Ⅱ) S.S. Chang;G.M. Lee;B.S. Lee
  6. Fuzzy Sets and Systems v.32 On variational inequalities for fuzzy mappings S.S. Chang;Y.G. Zhu
  7. J. Math. Anal. Appl. v.153 Vector complementarity problems and its equivalences with weak minimal element in ordered spaces G.Y. Chen;X.Q. Yang
  8. Math. Ann. v.142 A generalization of Tychonoff's fixed point theorems K. Fan
  9. Bull. Austral. Soc. v.46 A variational inequality in non-compact sets and its applications W.K. Kim;K.K. Tan
  10. Appl. Math. Lett. v.9 Convexity for set-valued maps D. Kuroiwa
  11. J. Math. Anal. Appl. v.97 On the use of KKM multifunctions in fixed point theory and related topics M. Lassonde
  12. A fuzzy extension of Siddiqi et al.'s results for vector variational-like inequalities, submitted Byung Soo Lee;Doo Young Jung
  13. Proceedings of Fifth International Fuzzy Systems Association World Congress A variational inequality for fuzzy mappings B.S. Lee;G.M. Lee;S.J. Cho;D.S. Kim
  14. J. Korean Math. Soc. v.33 Generalized vector-valued variational inequalities and fuzzy extensions B.S. Lee;G.M. Lee;S.J. Cho;D.S. Kim
  15. Indian J. pure appl. Math. v.28 Generalized vector variational-like inequalities on locally convex Hausdorff topological vector spaces B.S. Lee;G.M. Lee;S.J. Cho;D.S. Kim
  16. Appl. Math. Lett Vector variational-type inequalities for set-valued mappings Byung Soo Lee;Suk Jin Lee
  17. Fuzzy Sets and Systems v.78 Strongly quasivariational inequalities for fuzzy mappings G.M. Lee;D.S. Kim;B.S. Lee
  18. Nonlinear Analysis Forum v.4 Vector variational inequalities for fuzzy mappings G.M. Lee;D.S. Kim;B.S. Lee
  19. Appl. Math. Lett v.6 Generalized vector variational inequality and fuzzy extension G.M. Lee;D.S. Kim;B.S. Lee;S.J. Cho
  20. Indian J. pure appl. Math. v.28 On vector variational inequalities for multifunctions G.M. Lee;B.S. Lee;D.S. Kim;G.Y. Chen
  21. Lecture Notes in Economics and Mathematical Systems v.319 Theory of Vector Optimization D.T. Lu
  22. Nonlinear Analysis T.M.A. v.18 A saddle point theorem for set-valued maps D.T. Luc;C. Vargas
  23. Fuzzy Sets and Systems v.55 Variational inequalities for fuzzy mappings (Ⅰ) N.A. Noor
  24. Internat. J. Math & Math. Sci. v.21 no.4 A general vector-valued variational inequality and its fuzzy extension S. Park;B.S. Lee;G.M. Lee
  25. J. Math. Anal. Appl. v.108 Generalized quasi variational inequalities in locally convex topologicial spaces M.H. Shih;K.K. Tan
  26. Indian J. pure appl. Math. v.28 no.8 On vector variational-like inequalities A.H. Siddiqi;Q.H. Ansari;R. Ahmad
  27. J. Optim. Th. Appl. v.84 On vector variational inequalities A.H. Siddiqi;Q.H. Ansari;A. Kahliq
  28. J. Math. Soc. Japan. v.28 Nonlinear variational inequalities and fixed point theorems W. Takahashi
  29. J. Math. Econom v.12 Existence of minimal elements and equilibria in linear topological spaces N.C. Yannelis;N.D. Prabhakar
  30. Pacific J. Math. v.97 A minimax inequality and its applications to variational inequalities C.L. Yen