초록
관찰 단위들간 특정한 공간 종속관계를 지닌 공간모집단에서 사각형의 칸들로 분할한 후 각 칸마다 하나의 표본점을 임의추출하여 관심 변수의 모수를 추정할 때 탐색 관찰조건을 만족하는 인접한 표본단위만을 추가 관찰하여 모수를 추정하는 적합탐색 추정 방법을 층화 공간표본설계에 적용시켜 보았다. 모의자료를 설정한 가상의 2차원 공간모집단을 층화 공간표본설계에 의해 층화시킨 후 적합 탐색 추정방법을 적용시켜 본 결과, 단순히 공간모집단을 분할하는 전통적인 공간표본설계보다 적은 수의 표본이 관찰되었으며, 효율성이 크게 감소하지 않는 결과를 얻음으로써 층화효과와 적합탐색 관찰효과가 동시에 존재하는 적절한 추정 결과를 얻을 수 있었다.
We systematized an stratified spatial sample design(SSSD) that uses the adequate stratification criteria such as the shapeness or the dispersion of an interesting region in a spatial population. And we proposed an adaptive searching estimation method in the SSSD to estimate the area of region of interest in two-dimensional surfaces. When wc adopt the proposed adaptive searching estimation method in SSSD, the observing sample size is more decreased than a classical sample design that all the designed sample size is observed. Nevertheless it has been shown that we can produce the moderate result but the efficiency is a slight reduced.