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A Bayes Rule for Determining the Number of
Common Factors in Oblique Factor Model

Hea-Jung Kim!

ABSTRACT

Consider the oblique factor model X' = Af + =, with defining relation
Y = A®A’ + U. This paper is concerned with suggesting an optinial Bayes
criterion for determining the number of factors in the model, i.e. dimension
of the vector f. The use of marginal likelihood as a method for calculat-
ing posterior probability of each model with given dimension is developed
under a generalized conjugate prior. Then based on an appropriate loss
function, a Bayes rule is developed by use of the posterior probabilities, It
is shown that the approach is straightforward to specify distributionally and
to implement computationally, with output readily adopted for constructing
required criterion.

1. Introduction

The most widely used multivariate statistical model in the social and be-
havioral sciences involves linear structural relations among observed and latent
variables. Linear structural equation models can be described as a class of mod-
els in which a p-variate observation X; on subject ¢ is presumed to be generated
as X; = A(, « = 1,..., N, where the matrix A is a function of a basic vector
of parameters and the underlying k& (k > p) generating variables ¢ mayv rep-
resent measured, latent, or residual random or fixed variables (¢f. Yuan and
Bentler, 1997). Examples of such models include path analvsis, factor analysis,
errors-in-variable models, and simultaneous equations (see, e.g., Bollen and Long
1993; Byrne 1994; Hoyle 1995; and Kim 1998). Among them factor analysis
attempts to simplify complex and diverse relationships that exist among a set
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of observed variables by uncovering common dimensions or factors that link to-
gether the seemingly uncorrelated variables. To obtain the factor analysis model,
let A= (A,I)and ¢ = (f/ ¢). The linear latent variable structure becomes

Xi = A,fi + i, m<p, i=1,..., N, (1.1)

where A,, denotes a p x m matrix of constants called the factor loading matrix,
f; denotes m x 1 factor score vector for subject ¢ having E'(f;) = 0 and Var(f;) =
®,,.. In the model £;’s are assumed to be mutually uncorrelated and normally
distributed as N,(0,¥,,) where ¥, is a diagonal matrix. The model (1.1) with
m x 1 factor vectors will be denoted by M,, in the sequel. Several authors
suggested Bayesian analysis of the model under various prior assumption of the
model, see, e.g., Kaufman and Press (1973; 1976), Wong (1980). Lee (1981).
Euverman and Vermulst {1983), Shigemasu (1986) and Press and Shigemasu
(1989). However, before using their methods, we need to choose the number of
common factors to be included in the model, i.e. determination of m. Several
criteria have been proposed for choosing m, the number of factors. Among them
following five criteria are frequently used in practice (cf. Rencher 1995): (i) Scree
test; (ii) Eigen value criterion; (iii) Communality criterion: {iv) Likelihood ratio
criterion; (v) AIC by Akaike (1987). But these criteria may be criticized in that
the first three criteria are informal and heuristically based criteria, while the last
two criteria are formal but it is based upon asymptotic result and does not have
a closed form expression.

Purpose of the present paper is to develop yet another criterion which gives
formal, exact and a closed form criterion for determining the number of factors.
The development involves calculation of posterior probability of each possible
oblique factor model with given value of n: via a Bayesian test criterion. called
Bayes factor, and suggests a procedure to determine optimal value of m. The pa-
per is constructed so that the basic model we are adopting is set out in Section 2.
Section 3 develops the basic factor analysis model, introduces prior distributions
on the parameters and calculates the joint posterior density of the parameters.
Finally we find the marginal likelihood of the model. The procedures for calculat-
ing the Bayes factor and the posterior probability of each possible factor analysis
model are discussed in Section 4, and it concludes the section by suggesting a
Bayes rule that leads to the new criterion. Section 5 illustrates performance of
the criterion on a real data example. Section 6 includes some concluding remarks.
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2. Bayesian Approach for Model Selection

Suppose we have data (X7i,..., Xn) = X’ assumed to have arisen under one
of all possible models M;,..., M,_; having probability densities P{X|A,,, F),,
®,.,¥,,) under M,,, m =1,...,p— 1, where F, = (fi,.... fn) and m denotes
the dimension of factor score vectors (i.e. the number of common factors) in
(1.1). Given a prior distribution 7(A,,, Fi, @m, Y| M) for the parameters of
each model, together with prior probability p,, of each model being true, the data
produce the posterior probability of M,, being true as

(X‘Mm )pﬂl

P(M,,1X )
(M) = P21 P(X|M;)p;

m=1,...,p—1, (2.1)

where the densities P(X|M,,) are obtained by integrating over the parameter

spaces, so that

P(X\|M,,) = /P(X\Am,Fm,@m,\Ilm,]\J,n)ﬂ(Am,Fm,@m,\IlmIZV[m)BAmaFma@mf)\I’m.
(2.2)

The above equation is called the marginal likelihood of X under AM,,. Using the

marginal likelihood, Jeffrey’s (1961) defined the Bayes factor for comparing Af,,

against M,,., m # m’, such that

P(X|Mn)

Bmm’ = .
P(X,Mm’)

(2.3)
The Bayes factor can be viewed as the ratio of the posterior odds of A, to its
prior odds, regardless of the value of the prior odds, and hence it is the weighted
likelihood ratio of M, to M,,s giving a comparative support of the data for the
two models (cf. Kass and Raftery, 1995; Kim, 1999). The posterior probability
(2.1) that M, is true is then expressed in terms of the Bayes factors

m/=1 £

-1
pn’ :
]\’ m'X (Z . m m) y, M= 1,.-.,]7—‘ 1, (24)

where By, = 1/Bpm . The posterior model probabilities given by (2.4) will lead
to a criterion for determining the number of common factors ( i.e. determining
m) in (1.1).
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3. Marginal Likelihood of Oblique Factor Analysis Model

To recapitulate, define p-variate observation vectors, (Xi,..., Xy) = X', on
N subjects. The means are assumed to have been subtracted out, so that F(X) =
0. Under M,,, if we suppress the subscripts in A,,, Fp,, ¥y, and ®,,, the factor
analysis model can be written in matrix notation as

—Xi = Afi+5i, ’i:l,...,N, m < b, (31)

where A denotes a p x m matrix of constants called the factor loading matrix:
fi denotes m x 1 factor score vector for subject i; F' = (f1,..., fv). The &;’s
are assumed to be mutually uncorrelated and normally distributed as N,(0,¥),
T > 0. If we assume (A, F, ¥) are unobserved and fixed quantities, X; is normal

with mean A f; and covariance matrix ¥. and hence the likelihood for (A. F, ¥) is

e 1 1
P(X|AF¥) = (27r)_‘\”/2|\11(“7\/2 exp {—§tr[\P‘1(X ~ FAY(X - FA')]} .
(3.2)
3.1. Prior Specifications

The usual assumption about the oblique factor score vectors (f;) is that they
are independent and normally distributed , namely N,,(0, @), which is equivalent
to a prior assumption about the oblique factor parameters, ®. Now, since ®
is parameter of the oblique factors, one must introduce a prior distribution for
its analysis. Thus the prior information is introduced in two stages: First, the
conditional prior distribution of f; given @ is

£i18 % NL(0,8), i=1,...,N, (3.3)
which is the usual assumption about the oblique random factors. and we use a
generalized natural conjugate family (see Press and Shigemasu (1989)) of prior
distributions for (A, ¥) so that

. /2
PAIY) = (27r)"mp/zl'-ql[ﬂ'—:/3 exp {—%tr[(A ~Ao)H(A - AO)’\IJ-I]} L (3.4)
P(o) = co(y,p)|‘I’|_”/2IBI("_”_1)/2 exp {—%tr[‘l’”B]} \ (3.5)

with B a diagonal matrix and H > 0 a symmetric matrix,
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where, for integer values o and 3,
¢gHa,B) = 20777 0),

where 8 = o — 3 — 1 and

3 .
, ‘ ~1
Ta(0) = #/P-DATTT (0 - J——O >

J=1 =

is the 3 dimensional gamma function. Secondly, assume secondary parameter @

is Inverted Wishart with scale parameter H and degrees of freedom x so that
S~ W H, m K), &>2m, (3.6)

As will be seen, this form of the prior specification produces analvtically tractable
marginal likelihood for X.

Thus, T follows an Inverted Wishart distribution, {v, B) are hvperparam-
eters to be assessed; A conditional on ¥ has elements which are jolutly nor-
mally distributed, and {Ag, H) are hyperparameters to be assessed. Note that
E(F'F) x H leads to the scale parameter in (3.4) aud E(¥|B) is a diagonal to
represent traditional views of the factor model containing “commmon” and “spe-
cific” factors. Also note that if A = (X],... A,)’, then var(A]¥) = T H~! and
cov((A;, Aj)|¥] = ¥;; H 1 In case the model is for the orthogonal factors, we may
take H = ngl,,, for preassigned scalar ng = v — 2in — 2, so that var(f;) = I,,.
These interpretations of the hyperparameters will simmplify assessment.

3.2. Marginal Likelihood of X

Combining (3.2} through (3.6), we obtain the joint posterior density of the

parameters
P(AF.® X, M,) x C|¥|~WN+m+/2 oy, {—%n[\p*l(;]} P(F.&). (3.7)
where
C = clwp)@n) PR EPR e,
P(F,®) = (27r)”mN/2[<I>[_N/2exp{—%tr[@_lF'F]}

. ’ ; 1
X co(r, m)|H|K=m=1/2)1| 7/ exp {~;fr[<I>_lH]} .
G = (X-FAY(X=FA)+ (A~Ag)H(A - Ay) + B.



100 Hea-Jung Kim

Lemma 3.1 (Press and Shigemasu (1989)). For G, given in (3.7)
G=Rp+ (A~ Ap)Qr(A - Ap), (3.8)
where

Qr = H+F'F
Rp X'X 4+ B+ AgHAy — (X'F + AcH)QF (X'F + AoH)',
Ar = (X'F+AH)H+FF)™"

il

Lemma 3.2. For Qr and Ry in Lemma 3.1,
Qr||RF| = (WA + (F - F)'(In - XW'X')(F - F)|, (3.9)
where
W = X'X + B+ AgHA],

A = H-HANW 'AH — (H'AW XY Iy = XWXV HH AW IX'Y,
F = (In - XW X)) 'XW™'AH.

Proof. Under the same notations,
QFIRFIWI™Y = |Qr|I, - (H'Ag+ F'X)'(H+ F'F)" (H'Aj + F X)W

= |Qr — (H'Aj + X)W (H'A, + F'X)/|
= |A+ (F—~F)(Iy-XW™IX')(F - F)|.

Multiplying |W]| on both sides of the equation, we have the result.

Theorem 3.1. Given the model (3.1), say M,, having m common factors, if
we set Kk = m + v — 2p, the marginal likelihood of X under M, is given by

P(X|Myn) = Ap|X'X + B + AgHAL =021 [y - XWIX|7™/2 0 (3.10)
where

Ap = w VPPN gomNmm /2 g mGm N mm /2

r, (l;ﬁ) '), (7__“¥"71) T, (7’—7;1—;))

() T () T ()
v = N+m+v—p-—1,

X
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Proof. The marginal likelihood is obtained by integrating the right hand side

of (3.7) over the parameter spaces, so that
i N : 1
P(X|Al,) =C / P(F, &)| |V +m+0)/2 oy {—;m-[qf-lc;'}} OVOANIPIF.

Integrating with respect ¥, and using properties of the Inverted Wishart density
gives the marginal density of (A, F'), and then arrange the remaining integral with
respect to A. This can be accomplished by factoring G (using Lemma 3.1) into a
form which makes it transparent that in terms of A, the density is proportional
to a matrix T-density

o P(F, ®)
P(X[M,,) = C, / |Rp + (A = Ap)Qr(A — Ap)/ /2

where C'| = C'/eg(y + p+ 1, p). This is readily integrated with respect to A by

JAOPIF.

using the normalizing constant of the matrix T-distribution (cf. Dickey 1967)
and applyving Lemma 3.2 to give the joint posterior density of & and F. Then
integrating the joint posterior density with respect to ®, using the normalizing
constant of the Inverted Wishart distribution, we have. under the condition that

K=+ -—2p,

P(X| M) = 7T—N(p+m)/2’B'(7—/\-'—'")/2‘H"(*f—‘\""'”)/Z[X’X + B+ AUHA{,]"(“‘W'")/2
Fp (%) I_‘m (tgl;p>

r, (== T, ()

X / A+ (F = FY(Iy - XW'X)(F — F)|0b-"/29F,

Integrating it with respect to F using the normalizing constants of the matrix
T-distribution, we have the result.

Note 1. [Iy — XW™!X'| and (Iy — XW™!X)71 are equivalent to |I, —
W1X'X| and (Iy - X(X'X — W)~1X"), respectively. The latter representations
are more convenient for numerical calculations than the former, because we need

only invert matrices of order p, instead of those of order N.
4. New Criterion

The marginal likelihood is a summary of the evidence provided by a data set
represented by a statistical model (i.e. Factor analysis model). When several
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alternative factor analysis models M,,,’s (m = 1,...,p—1) are being considered,
their marginal likelihoods yield posterior probability of each wmodel. Suppose
that p-dimensional oblique factor analysis models, My, M,, ... M ,_;. are being
considered. Each of Ay, ..., M,_; is compared in turn with A, vielding Bayes
factors Bim,s -y Bip—1)m> Bmm = 1. Then the posterior probability of 11, is
given by (2.4). Thus Theorem 3.1 and (2.4) vields the following posterior proba-
bility of M,,.

Lemma 4.1. Restoring the subscripts for (A, F, ¥) and corresponding hy-
perparameters (Ag, H, B) and taking all the prior odds p,,/p,. equal to 1, for
m'=1,....,p~1,and 1 < m < p— 1, we have the posterior probability of M,,.
P(M,|X) =

Amlxlx + Bm + AmOHmA:n()!H<7~771)/2II.‘\' - X;,I/;;IX/I——m/Z

m'=1

" e I -1
( pil Am’lX/X + Bm’ + Am’OHln’Aiu’Ol_(Af—m )/ZIIN - XI,.I,";’lxll—m /2>

(4.1)
where (A0, Hyyry Bint) and (Ao, Hpn, Byy) denote corresponding hyperparame-
ters of (A, Fpro Wo) in Mo, and (A, Fry . W,,,) in M, respectively.

Proof. Direct application of the marginal likelihood in Theorem 3.1 to (2.4)

gives the result.

Taking all the prior odds p,./p, equal to 1 is natural choice, but other
values may be used to reflect prior information about the relative plausibility of
competing models. In the present paper our aim is focused on the selection of
a single best model in the presence of a set of rival models. Lemma 4.1 gives
an optimal rule for selecting the best fitting factor analysis model. Suppose we
use the marginal P(X|M,,.), m’ = 1,...,p — 1, for selecting the factor analysis
model, and suppose p,,s is the prior probability of M, being the true model,
then the risk incurred in choosing M, as the best fitting factor analysis model is

p—1 )
; m'= L(Mm'7Mm)P(X‘A'Iivl’>pnz'
R X = T X My

m'=1

, (4.2)

where L(M,,., M,,} is the cost or loss associated with the model selection error.
Let assume the special but commonly used loss function;
L(M,,. M) =1 = 6(M,,r, M), (4.3)

where (M., M) = 1 if M,y = M,,, otherwise it is zero. Then we have the

following theorem.
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Theorem 4.1. A Bayes rule for choosing the number of common factors in
the factor analysis model is to choose m (i.e. My,) if

P(M,|X) = Maz P(M,/|X), m"=1,...,p— 1. (4.4)

Proof. The risk incurred in choosing the best fitting factor analysis model
is (4.2). This can be minimized by choosing M, that minimizes the numerator in
(4.2). Minimizing the numerator, we have P(X|M,,,)pm = Max P(X|Mp/)ppn, m' =
1,...,p— 1. Applying Bayes theorem to this gives (4.4).

The rule resulting from choosing M, to minimize Risk(M,,|X) in (4.2) is
known as the Bayes rule, and it achieves minimal choice risk among all possible
models based on the posterior probabilities P(M,,:|X).

5. An Illustrative Example

We have extracted the data reported in Dillon and Goldstein (1984), and
have used it to illustrate the new criterion for determining optimal number of
factors. Table 1 gives raw data on 10 characteristics for 14 selected nations. The
characteristics are

X1: GNP per Capita($) X;: Trade (Millions of $)

X3: Power (Rank) X4: Stability

X5: Freedom of Group Opposition X¢: Foreign Conflict

X7 Agreement with U.S. in U.N.  Xjg: Defence Budget (Millions of $)
Xg: GNP for Defense (%) X1o: Acceptance of International Law.

Due to different measurement units, we standardized the data for the model
selection. The hyperparameter H,, was assessed as H,, = I,,, +.1(J(m, m) - I,,,}.
where J(m,m) is a m X m matrix with all elements equal to one. We took
vm = 2p + m 4+ 3 to reflect minimal prior knowledge but to permit E¥,, and
E®,, (m=1,...,9) toexist. The prior distribution of ¥, and A,,, were assessed
with B = .5(m + 1) 110 and Ano = (0.5/(m(1 + .1{(m — 1)))/2J(p.m). so that
E[AJE[®IE[A)+E[Y] = Ao HAL g+ B /(m+1) has a correlation matrix pattern.
This assessment is consistent with the defining relation of the oblique factor
model. Our program using SAS/IML calculates values of the marginal likelihood
and posterior probability of each model M,,. Those are noted in Table 2. It
points out that the new criterion attains maximum posterior probability (*) for
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TABLE 1. Sample Data

X 1 X 2 X 3 Y4 )(5 X 6 A"{ AX'B 4\79 .\'10
Brazil N 2,729 7 0 2 0 69.1 148 2.8 0
Bruma 51 407 4 0 1 0 -9.5 74 6.9 0
China 58 349 11 0 0 1 41.7 3,064 8.7 0
Egypt 134 928 5 1 1 1 -154 158 6.0 1
India 70 2,689 10 0 2 0 -286 410 1.9 1
Indonesia 129 1,601 8 0 1 0 -214 267 6.7 0
Israel 515 415 2 1 2 1 42.9 33 2.7 1
Jordan 70 83 1 0 1 1 8.3 29 25.7 0
Netherlands 707 5,395 6 1 2 0 523 468 6.1 1
Poland 468 1,852 9 0 0 1 -41.7 220 1.5 0
U.SS.R. 746 6,030 13 1 0 1 -41.7 34,000 204 0
U.K. 998 18,667 12 1 2 1 69.0 3,934 7.8 0
U.S. 2,334 26,836 14 1 2 1 100 40,641 122 1

four factors; so we should conclude that a four common factor model My is best
fitted to the data. In our present example, the same progam with H,, = I,,, +
05(J(m,m)—I,) and Hp,, = I, + .2(J(m, m) — I;,) yield posterior probabilities
of My as .8587 and .7984, respectively. This notes that, in selecting the best
fitted model, the suggested method is insensitive with respect to small difference
in assessment of values in H,,. For the reference, AIC’s for models with different
numbers of factors are also calculated via SAS/STAT PROC FACTOR (cf. Ray
1982) and listed in the table. In this numerical example, AIC presents the value
calculated from the maximum likelihood factor method (for more than 7 common
factors minimum eigen value criterion stopped calculating AIC). More than 5
common factor analysis generates the message, “Warning: Two mauny factors for
a unique solution.” The parameter in the model exceeds the number of elements
in the correlation matrix from which they can be estimated, so an infinite number
of different perfect solution can be estimated. The degrees of freedom for the chi-
square test (LRT) are nonpositive for m > 5, so that probability levels cannot
be computed for m(> 5) factor models. The probability levels for the chi-square
test are .0001 for the hypothesis of no common factors, .0806 for one common
factor, and .3783 for two common factors. Akaike’s information criterion attains
their minimum values at two common factors, so there is little doubt that Afy
is appropriate for the data. However, Dillon and Goldstein (1984, p. 95) notes
that four common factors are appropriate for the data set. This confirms the
statement that AIC and the chi-square test tend to include common factors that
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are statistically significant but inconsequential for practice (cf. Ray 1982, p. 328).
Thus, the new criterion can be viewed as a good surrogate for the impractical
classical criteria in a sense that the criterion gives the same conclusion with that
of Dillon and Goldstein. Also note that when our observational data is augmented
by proper prior information, as in this example, the identification-of-parameter
problem of the classical criteria disappears.

TABLE 2. Selection of Common Factors
(“~” denotes that corresponding value is not available)

Number of Factors P(X|Mm) x 1038 P(M,|X) AIC  LRT(p-value)

1 0.0019 .0000 4.5893 .0806
2 20.474 .0042 -4.1528 3782
3 1023.271 1464 -0.6433 4178
4 5938.576  .8493° -0.9026 297
3 0.0005  .0000 -0.0375 5189
6 0.0002  .0000 2.3697 -
7 0.0001  .0000 8.0011 -
8 0.0001  .0000 - -
9 0.0001  .0000 - -

6. Concluding Remarks

We have suggested a criterion for selecting the number of common factors
in oblique factor analysis. The development is pertaining to deriving the pos-
terior probability of each factor analysis model with given number of factors m
and constructing a Bayes rule for optimal selection of m. The appeal of this
criterion is that it is not only optimal but a closed form which has not been
available yet, and hence it is easy to apply for choosing the number of common
factors to be included in the oblique factor model. Moreover it is free from the
identification-of-parameter problem of the classical criteria (LRT and AIC) and
provides probabilistic considerations for selecting promising number of common
factors so that one may compare the factor extractions among the highly plausible
models.
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The posterior probabilities of m-factor (m = 1,...,p — 1) models are cal-
culated by use of corresponding marginal likelihoods. To derive the marginal
likelihoods we use a natural conjugate priors for the parameters that uses a gen-
eralized natural conjugate family (cf. Press 1982) of prior distributions for (A,
¥). Once we get the best fitted model having optimal m, we may proceed fur-
ther analysis for the selected model such as point and interval estimate of factor
scores, factor loadings and specific variances. A study pertaining to those analy-
ses is straightforward and is left as a future study of interest.
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