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Generalized One-Level Rotation Designs
with Finite Rotation Groups
Part I : Generation of Designs !

YouSung Park,'KeeWhan Kim 2

ABSTRACT

In this paper, we consider one-level rotation designs with finite rotation
groups such that the design satisfies two basic requirements: all rotation
groups are included in any given survey period, and overlapping rates depend
only on the time lag. First we present the necessary number of rotation
groups and a rule for the length of time the sample units are to be in or out
of the sample to satisfy the requirements. Second, an algorithm is presented
to put rotation groups to proper positions in a panel in order to include
all finite rotation groups for any survey period. Third, we define an one-
level rotation pattern which is invariant in the survey period and has useful
properties in practical sense.

Key Words: One-level rotation design; Finite rotation groups; Rotation groups
in panel; Allocation; Overlapping.

1. Introduction

In rotation sampling design, the sample units are systematically rotated in
or out, completely or partially, according to specific rules in the successive time
periods. Rotation is used to avoid undue burden of reporting from survey respon-
dents and to obtain information of changes from overlapping units. Such rotation
design has been used in sample surveys since the 1950’s, and certain rules are
followed to satisfy the basic requirements of the design (Hansen, 1955; Woodruff,
1963; Rao and Graham, 1964; Cochran,1977; Wolter, 1979).

In this paper, we assume that the entire sample for the life of a survey is
divided into a finite number of groups which are called as rotation groups; for the

'The authors wish to acknowledge the financial support of the Korea Research Foundation
made in the program year of 1997

'5-1 Anam-Dong, Sungbuk-gu, KOREA, Korea University

25-1 Anam-Dong, Sungbuk-gu, KOREA, Korea University



30 YouSung Park and KeeWhan Kim

survey period sample, each rotation group is again divided into an appropriate of
subsamples in such a way that all subsamples in each rotation group are surveyed
for the life of survey. For each survey period, one subsample from each rotation
group is selected to be surveyed and hence the survey period sample is comprised
of subsamples as many as the number of rotation groups.

In one-level rotation sampling designs, subsamples from some of the rotation
groups at a specific survey period are replaced with new subsamples in the same
rotation groups at the next survey period and subsamples from the remaining
rotation groups are retained in the sample at the next survey period. At each
survey period, a subsample reports only one period of data(Hansen, 1955; Rao
and Graham, 1964; Cantwell, 1990). This type of survey is used for the Canadian
Labor Force Survey(LFS) conducted by Statistics Canada, the Current Popula-
tion Survey(CPS) at the U.S. Bureau of Census and the Labor Force Survey in
Japan.

For instance, CPS includes 8 rotation groups in a psu, each rotation group
includes a certain number of subsamples, and each subsample includes about four
households. One subsample from each of eight rotation groups is rotated in and
out. The subsample stays in the sample for 4 months, leaves the sample for the
next 8 months, then returns to the sample for the following 4 months. We call
this 4-8-4 design to which alternative designs are compared. Here, the length
of time staying in and leaving out of the sample, and the number of repetitions
are restricted to 4 months, 8 months, and 2 times, respectively. Freeing from
such restrictions, we present the rules of creating alternative one-level rotation
designs. From here on, one month is a survey period; during this period, a
monthly sample includes one subsample from each rotation group, which stays,
drops out, or returns to the sample simultaneously. We assume that the rotation
scheme is conducted in a psu without loss of generality since all discussions below
can be applied exactly by the same way for any psu.

The one-level rotation sampling design with finite rotation groups expressed
as ri* — r;"_l is defined as follows : a subsample is interviewed for consecutive ry
periods, drops out for the next ry succeeding periods, and return to the sample
for the another r; periods. This process is repeated a finite m times before the
subsample drops out of the sample completely. We set ro = 0 if m = 1 in the
expression ri* — ri*~!

Our findings are presented in the following three sections. Section 2 discusses
two basic rules regulating the number of months for a subsample to stay, leave, or
return again to the sample to satisfy the basic requirements. In Section 3, define
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the algorithm to allocate rotation groups and a class of one-level rotation design
with conditions to follow the rotation pattern which depends on only the rotation
group a sample unit belongs to. In Section 4 a formula to calculate overlapping
ratio between any two survey months is presented.

2. Generalized One-Level Rotation Design

One-level rotation design including r* — 7"~ design is a compromise between
a permanent sample and a completely new sample at each month. Determination
of ri, roand min ri* — 7'5"’1 design depends on the objectives of the survey, since
r1, rp and m regulate the how long a subsample is to be in, out of the sample
and how many time it returns to the sample, respectively. The ri* ~ 7‘;"‘1 design
accomplishes the following objectives: acquires for sample to be representative
of the population for each survey month by including all rotation groups in the
sample for each survey month; improves the reliability of measures of change
by replacing the outgoing subsample with highly correlated subsample, which is
achieved by assigning the same rotation group to these two subsamples; gives
the same effect on the correlation structure between measures from different two
months by adding an assumption for the proportion of sample in common between
two months.

For these objectives, we assume in r* — r;”_l design that

(i} All rotation groups are included in the sample for each month. and the
sample size is the same for all survey months.

(ii) Subsample in a particular rotation group is replaced the subsample in the
same rotation group.

(iii) The overlapping percentage between the present month ¢ and t+¢* depends
on only time lag t*, for t* = 0,41,4£2,---.

LFS and CPS satisfy these assumptions. Let D(K, K3) be the class of r7* — ]!
design, 1 < m < oo which have the overlapping at most between months t and
t+ K, - Ky, for K1, Ky > 1. D(K,, K,) contains the r7* — r7'~! designs with at
most K - Ko months overlapping ; D(3, K;) are the r* — r;"_l designs with at
most K, quarters overlapping ; D(12, K3) consists of the r" — rJ"~! designs with
at most K5 years overlapping. For example, LFS is in D(1,5) and D(5,1) with

m = 1, and the CPS is in D(1,15), D(3,5), D(5,3) and D(12,1).
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Theorem 2.1. Suppose that a r* — ri*~! design in D(K, K3) for each fized
K\ ,Ky > 1. IF forry > 1,7, >0, and 1 < m < oo, the rit — r;"_l design
satisfies the assumptions (i), (1) and (111), then

(a) For each survey month and each i = 1,2,... ,mry, there is a subsample
appearing in the sample for the ith time is presented, and for the life of
survey, mry rotation groups are necessary, and

(b) ry =lIry wherel =0,1,.... For each K\,K, =1,2,..., and I, m and ry
are determined with the constraint Ky - Ky —ri+1<ri(m—-1)(1+1) <
K (K3 4 1) — ry except for the cases of ry satisfying Ky - Ky —ry — 1 <
ri(mg —1)(14+1) < Ky - Ky — vy + 1 where m§ = {m*;ry(m* — 1)(1 +1) <
Ky Ky <m*ri(1+1),m*=1,2,...,m}.

The proof of the Theorem 2.1 is given in Appendix. It is lengthy, but shows
the insight of the Theorem. When m = 1, the number of rotation groups is
r1 by (a) of Theorem 2.1. Then we can always define r} — 0° design to satisfy
the assumptions given in Theorem 2.1 by replacing the subsample that is retiring
permanently from the sample with the new subsample in the same rotation group.
Since we have mr, rotation groups and each rotation group contains exactly one
subsample at any survey month, we have mr; pairs of subsamples for any different
two months in which two subsample in each pair comes from the same rotation
group. Among these mr; pairs, each two subsamples in some pairs are the same
subsamples because the subsample return to the sample later months, and each
two subsamples in the remaining pairs are different because they are replaced
in the same rotation group as time advances. In order to identify which two
subsamples are the same among the mr; pairs, we introduce the ath panel P,,
« =1,2,--- in which each panel consists of mr; rotation groups and the index «
indicates the ath subsample in each rotation group. By this panel together with
rotation groups, any subsample can be uniquely represented by the affiliation
index (7, Py) where v is the yth rotation group, and hence each two subsamples
at any two months can be identified; if two subsamples with the same rotation
group belong to the same panel, the two subsamples are the same; if not, they
are different subsamples. In CPS, this panel is defined as sample designation.
The panel P, will be further discussed in Section 3.

Example 2.1. Figure 2.1 illustrates Theorem 2.1 with 2% — 23 design where *o°
denotes which subsamples are being in surveyed at a given month. Since m = 4
and r; = ry = 2, mr; = 8 rotation groups by (a) in each of the 4 panels, P,,
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Figure 2.1: 2% — 23 system.
Panels and rotation groups

Py Py Py Py

YEAR| MON| 1 2 34567 8 3 567812 1234567834567 812
Y1 | JAN|[o o o o o o
FEB o o o o o o o o
MAR o o o o o o o o
APR o o o| o o o o| o
MAY o o o o o o o o
JUN o o o o o o o o
JUL o o o o o o o o
AUG o|l o o o of o o o
SEP o o o o o o o o
ocCT o o o o o o o o
NOV o o o o o o o o
DEC o o o o o o o| o
Y2 JAN o o o o o o o o
FEB o o o o o o o o

a = 1,2,3,4. Each panel consists of 8 rotation groups with different arrangement
of rotation groups. The arrangement is discussed in Section 3. The sample of
Jan.Year 1 consists of the group numbers (8,7,4,3,6,5,2,1), counting from the
right to the left. The rotation groups &, 7, 4, 3 in the panel P, appear in the
sample for the 1st, 2nd, 3rd, and 4th time, respectively and the rotation groups
6, 5, 2, 1 in the panel Py appear in the sample for the 5th, 6th, 7th, and 8th time,
respectively. The sample of Feb.Yearl is determined by simply moving one step
to the right from the first sample. The second sample also counsists of the eight
rotation groups that is (1,8,5,4,7,6,3,2), again counting from the right to the
left, and the order indicates the return time to the sample, the group 1 first time,
group 8 second time, - -, group 2 eighth time. At months Jan. and Feb.Yearl.
we have 8 pairs of subsamples, each pair from each of 8 rotation groups. For
instance, two subsamples from the rotation group 5, one from P, and the other
one from Py. Thus these two subsamples are different. Similarly, two subsamples
from each of rotation groups, 2, 6, 4 and 8 are the same subsample and two
subsamples from each of the other rotation groups, 1, 5, 3 and 7 are different.
The sample groups at month t are taken by moving exactly ¢ — 1 steps to the
right from the first sample. This procedure ensures the consistent overlapping
for a subsample to be in the sample for r;(= 2) months and to drop out of the
sample for next ro(= 2) months. The 24 — 23 design satisfies the condition that
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72 = 2 is a multiple of r; = 2 given in Theorem 2.1. Each month includes 8
subsamples, one from each rotation group, with the overlapping that depends on
only time lag. However, in Figure 2.1, if we choose the rotation groups 1,2,3,4
instead of 1,2,5,6 in Py, and rotation groups 5, 6, 7,8 instead of 3,4,7,8in P, as
the first sample, the 4th sample of April.Year 1 would not include the rotation
group number 3. This violates the assumption that all rotation groups are in
sample for any survey month. Reordering P, from P, = (3,4,5,6,7.8,1,2) to
P, =1(1,2,5,6,7,8,3,4) also violates the assumption. Therefore, an algorithm is
needed to have the rotation groups properly ordered within a panel, and further
discussed in Section 3.

The condition (b) of Theorem 2.1 is not easy to understand; thus, a numerical
example is given below to understand it better.

Example 2.2. We use the 3% — 62 design for K; = 12 and Ky=1to illustrate
the condition (b) of Theorem 2.1. Since r; = 3,7, = 6,m = 3 and [ = 2. the
33 - 62 design satisfies ry = Ir; and Ky - Ky —r; + 1 = 10 <ri(m-—1)(1+ I)
18 < Ky (1+ K3) — ry = 21. The number m* = 2 satisfies ri(m* —1)(1+1) <
12 < m*ry(1 +1). But, the 3% — 6% design also satisfies the exception case of
Ki-Ky—ry—1<ri(mi—-1)1+D < Ky Ky ~ry+1. Therefore, the 3% — 62
design can not be a member of D(12,1). Now take another design 52 — 10!
for K, = 12 and K, = 1. This design satisfies the conditions ry = Iry and
Ki-Ky—rm+1=8<ri{m-1)(1+0)=15< Ki{(1+ K3)—r; =19 for ry = 5,
ro =10,1=2, m =2, and K = 1. But mg = 1in the 52 — 10! design, it does
not satisfy the exception condition of Ky - Ky — ry — 1 < rifmg ~1)(1+1) <
Ky K3 —r1 + 1. Hence, the 52 — 10" design is a member of our D(12,1). The
following designs did satisfy the conditions of Theorem 1: 43 designs for K| = 12
and Kj =1 are 13' —0°, 14! — 0% 15! - 0°, 16! — 09, 17! — 0°, 18! — 0O, 191 — (O,
20" - 0°, 21" — 00, 22! — 0%, 23" — (0, 241 — 0 12 _ 111 22 _ 101,32 — 91 42 _g!,
57 -5, 52— 101, 62 — 6!, 72— 71, 82— g1 1352 93 _42 3%3-32,14-33 1453
24 —23,24 433435 1594 1531 25_21 16_095 16_35 96 —25, 17— 16,
=20, 18 17,18 - 27 19 - 18 110 _19 111 _ 110 454 112 _ 111, 63 designs for
D(12 2) including 1'% — 117,29 — 28 36 _ 35 43 _ 82 and 63 — 62; 69 designs for
D(12,3) including 1'% - 213,27 46 32 152 93 _92 and 162 — 16! 75 designs for
D(12,4) including 2'* — 23,48 — 47,56 — 55 8% — 162 and 12° ~ 122 ; 82 designs
for D(12,5) including 35 — 95,104 — 103,143 — 142,172 — 34! and 242 — 241,
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3. Allocation of Rotation Groups

This Section discusses the rules to allocate rotation groups systematically to
a proper position in a panel, and yet satisfy the Theorem 2.1. The mr rotation
groups are identified by the number 1,2,...,mr;. The ath panel P, includes
the mry rotation groups as P, = {1,2,...,mr} and the index « indicates the
ath subsample in each rotation group. The algorithm is summarized as follows:
(i) In an initial survey month, decide an appropriate number of panels, and the
mry rotation groups in each panel are ordered by a proper arrangement. Then
different mr; rotation groups are chosen from the panels; the subsamples in each
of the selected rotation groups are randomly ordered, and one subsample in a
rotation group is taken; These subsamples are designated as the first sample. For
example, in Figure 2.1, P; and P, are the necessary panels, and P is ordered as
(12345678) and P, is ordered as (34567812); then rotation group numbers 1, 2,
5 and 6 are selected in Pj, and 3, 4, 7 and 8 are from P,. These (12563478) in
combination with the corresponding panels are the first sample in 2% — 23 design.
In the first sample, the order counting from right to the left indicates the return
time to sample; he rotation group, 8 located at the last place on the right side
provides its second subsample appearing in the sample for the first time, similarly,
the rotation group, 7 located at the second to the last place provides its second
subsample appearing in the sample for the second time, ---, and finally, the
rotation group, 1 located at the first place provides its first subsample appearing
in the sample for the last or the mrith time. (ii) After the first sample is taken
for the initial survey month t, the groups, which provide the subsamples, are
determined systematically for the succeeding months, t+1,142,...: each monthly
sample includes different mr; subsamples. The mr; subsamples are uniquely
represented by a arrangement of rotation group numbers 1 to mr; and panels for
any survey month. The order of each monthly sample indicates the appearance
time to sample for the 1st to the mryth time from the right to the left as in (i).
For example, in Figure 2.1, we have (34781256) at Sep.Yearl. The rotation group
1 in the panel P; provides a subsample appearing to the sample for the 4th time.

Above procedures are illustrated by the algorithm in the following 6 steps
with the 24 — 23 design. To arrange rotation groups properly in the r7* — ri*~!
design, the assumptions and properties of Theorem 2.1 should be satisfied. The
basic panels Py, P,, ..., P, each with mr; rotation groups, should also meet the
conditions that h = [ if mry = (m — 1)r; and h = [ + 1 if otherwise, where [
comes from the equation ro =1Iry, [ =0,1,....
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Step 1 For the first panel P, allocate the rotation group numbers by increasing
order.
Namely, P = (1,2,3,... ,mr;). For example, in Figure 2.1, P, = (1,2,... ,8).

Step 2 Write out the basic panels Py, P;, ..., Py, each occupying mr; positions.
The ath panel P, includes positions from the position (o — 1)mr, + 1 to
amry. In Figure 2.1, we have hmry = 16 positions for h = 2, and the
second panel P, has the positions from the 9th to the 16th.

Step 3 Indicate the first r; positions by the symbol ‘o’. After the next r,
positions with no symbol, indicate the second r; positions with the same
symbol ‘o’. And so on until the mth r; positions are marked. See the row
of Jan.Yearl in Figure 2.1.

L2 P |
1234567380000 00

(oo} (el e] o o o ©

Step 4 Fill the checked positions in Py, P3,---, P, in turn with the numbers of

rotation groups that were not checked in P;. The rotation group numbers
checked up to the Step 4 provide the first sample.
In Step 3, the first and second positions, of P, are filled by group numbers,
3 and 4, respectively. Other two positions checked by ‘o’ in P, are the 5th
and 6th positions, filled by the group numbers, 7 and 8. These 3, 4, 7 and
8 in P, were not checked in P; as seen below.

L.~ | P |
12345678[34007800
(o] felNe] (el e} [ele]

Step 5 Fill the remaining rotation group numbers by circular order in the empty
positions of P,, o« = 2,...,h that are partially occupied from Step 4. In
Step 4, the 4 empty positions in P are the 3rd, 4th, and 7th and 8th places.
The first 2 empty positions and the second 2 empty positions in P; are filled
by group numbers 5 and 6, 1 and 2, respectively because the number 8 is
followed by 1 by circular ordering as seen in the figure below.
When the panels P, are totally unchecked for o < h, we copy the previous
panels P/, o < a.
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Now, we have the arrangement of h panels, Py, Py, -+, P,. Copy these
panels to the next h panels, Phyy, -+, Py and so on. For instance the
panels P3 and Py in the algorithm are the copy of the panels P; and P as
seen in Figure 2.1.

A [ P
1234567834567812
[} Qo (o] [e 3R]

Step 6 With the first sample defined in Step 4 and P, given in Step 5, the
sample of month ¢ for ¢t > 2 is determined by going exactly t — 1 steps to
the right from the first sample as shown in Figure 2.1.

In r* — 7;"_1 design, m subsamples are replaced for each survey month :

one subsample is replaced by a new subsample and the other m — 1 subsamples
are replaced by old subsamples which are in the sample r; months before. For
each span of mr; survey months, unless each of mr; rotation groups contains
exactly one new, subsample, some rotation groups contain more than one new
subsamples while the others do not contain a new subsample. This may cause
inaccurate estimators for characteristics of interest. For instance, 2* — 2% design
in Figure 2.1, from Jan.Year 1 to Aug.Year 1, for mr; = 8 survey months 8 new
subsamples are replaced, but these subsamples are from only 6 rotation groups.
The new subsamples from rotation group 1 and 2 are rotated in twice during 8
survey months whereas subsamples from rotation group 6 and 7 do not rotated
in. Define that a r* - r;"_l design has mr; span if each of mr; rotation groups
contains exactly one new subsamples during each span of mr; survey months.
Therefore 24— 23 design dose not have mry span. We further restrict our attention
on the rf* — ry’ ~1 design which has mr; span. Let v,(i) be the rotation group
including the subsample which appears in the sample for the ith time at month
t. Suppose that a r{* — r3'" ! design satisfies the following rotation pattern: for
appropriately given m’, 1 S m' < m,

(i = Yepr[mod,(m+m/ —1—k)ry+1] ifi=(2m' =1~ k)r,

Y2

t Yer1[? + 1] otherwise
k=—(m-2m'+1),---,0,---,2m' — 2 (3.1)

This rotation pattern depends on the appearance time, m and m’. In particular,
if we choose m/ = m in (3.1) the rotation pattern is v;(i) = y1[i + 1], i =
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1,...,mr; — 1 and y¢[mr;] = y441[1]. LFS and CPS follow this rotation pattern.
Whether a r* — r;"_l design has the rotation pattern given in (3.1) depend on
r1, r2 and m. And an appropriate m’ can be also defined through ry, ry and m
as shown in the following Theorem.

Theorem 3.1. Suppose that r]* — 7’5”—1 designs satisfy Theorem 2.1 and follows
the rotation pattern given in (8.1). Then, for each given ry,ry and m, there is a
positive integer m’, 1 < m' < m such that modm, (m'ry + (m' — 1)ry) = 0.

The proof of Theorem 3.1 is given in Appendix. Theorem 3.1 is a necessary
condition to have the rotation pattern given as (3.1). Conversely, the algorithm
in this Section provides that the necessary condition in Theorem 3.1 is in fact
a sufficient condition. From the algorithm in this Section our finding is that
whenever there is a positive integer m', 1 < m’ < m satisfying modm(rn’rl +
(m’ = 1)ry) = 0 for each given ry,r; and m, the arrangement of rotation groups
in all panels P,, o > 1is Py, = (1,2,---, mr;). That is, if there are nonnegative
integer, ! > 0 and positive integer m/, 1 < m’ < m such that ro = Ir; and
modm(m’rl + (m — 1)7‘2) = 0 for given ry,r; and m, then the corresponding
rit - 7‘;”_1 design follows the rotation pattern given in (3,1) and includes all m
rotation groups for each survey month, and P, = (1,2,--- ,mr;) for all o > 1.
More over since P, = (1,2,-- ,mr;) for all & > 1 the r]" — r;”_l design having
the rotation pattern of (3.1) has mr; span.

4. Overlapping

An overlapping between any two months occurs only when the same sub-
samples are in sample at both of the two months or equivalently, only when
subsamples in the same rotation group and panel are in sample. The proof of
Theorem 2.1 in the Appendix leads us to the following overlapping rule between
months ¢ and ¢t 4+ t* in the r* — r;""l design : For any K, K in D(K, K3),

if 1<t*<r -1

if = i(7’1 + T2) - j,
Ot t) = mr 1 o (4.1)

j =T — 1,7’1 - 2,...,1— I

0 otherwise
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For fixed K| and K, in D(K, K,), the biggest overlapping from month to
month (i.e. t* = 1) occurs when m = 2. The reason is that the smaller m, the
larger r; by (b) of Theorem 2.1. However, from (4.1), the overlapping between
month ¢ and t+ (r; +r3) is (m —1)/m. This implies that the overlapping between
month ¢t and t + (r; + r2) becomes larger as m is larger.

Table 4.1: Overlapping percentages by designs when Ay =12, K> = 1, and r; > 2

Designs ¢

1 2 3 4 5 6 7 8 9 10 11 12
22-10' 5.0 00 00 00 00 00 00 00 00 00 250 500
22 —-4% 500 00 00 00 333 667 333 00 00 00 167 333
2t 9% 500 0.0 375 750 375 00 250 500 250 0.0 125 250
29 -4* 500 00 00 00 375 750 375 0.0 00 00 250 500
25 _ 9% 500 0.0 40.0 80.0 400 00 300 60.0 300 00 200 400
2¢ _ 9%  50.0 0.0 417 833 417 0.0 333 667 333 0.0 250 3500
329" 667 333 00 00 00 00 00 00 00 167 333 500
3% _32 667 333 0.0 222 444 667 444 222 00 111 222 333
3* 3% 667 333 0.0 250 500 750 500 250 00 167 333 500
42 -8 750 500 250 00 00 00 00 00 125 250 375 50.0
52 -5'  80.0 60.0 40.0 200 0.0 100 200 30.0 40.0 50.0 40.0 30.0
52 -10' 80.0 600 400 200 00 00 00 00 00 0.0 100 200
62 —-6' 833 66.7 50.0 333 167 0.0 83 167 25.0 333 417 500
7271 857 714 57.1 429 286 143 0.0 7.1 143 2014 286 357
& _ 8 875 750 625 500 375 250 125 0.0 62 125 188 250

Table 4.1 shows the overlapping percentages for the r" — r*~! designs when
1 2 :

Ky =12, K, =1and r; > 2. When the time t* = 1, the overlapping increases as
ry increases. The highest overlapping of quarter change (t* = 3) is attained in
the 82 — 8! design with 62.5%. 2% — 10!, 24 — 43 26 — 25 32 9l 42 _ 8! and
62 — 6! designs attain the highest overlapping of year change(t* = 12) with 50'%.
The rate of overlapping is useful information to reduce the variance of differences.
and to obtain better information of changes.

APPENDIX : Proof of Theorem 2.1

(a) By the definition of r7* —r}'~! design, since a subsample can be interviewed for
the maximum of mr; months, we can partition the subsamples into mry individual
subsets by the number of appearance in the sample at any survey month. In
the following G, the number of returns to the sample is indexed by i, and the
number of months staying in sample is indexed by j. Define G = {7+, 1 < i <
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m,1 < j <71} where v, ; is a subset of subsamples which appear in the sample
(¢t —1)r; + j times at a survey month ¢, ¢ = 1,2,... . Assume that the number
of subsamples in Yt,ij 18 Mt ;. Since a subsample from a particular rotation
group is rotated in, out and returns to the sample simultaneously, subsamples
having different appearance times to the sample at a specific month come from
different rotation groups. Moreover, only one subsample from each rotation group
is selected for the monthly sample. Therefore n,,;; = 0 or 1 for all ¢, and J-
Consider two sets of G, and Gyy;. The followings can be shown easily by the
definition of rm — r7*~1 design :

(I) For each J; = 1,2,...,r, — 1, only {7145} and {ye41,,} for 1 < i < m
and 1 < j < ry—J; return to the sample at month ¢ + .J; and t + 1 + J;,
respectively. Here define J, = 0 when r; = 1.

(IT) Foreach I =1,2,... , m—land Jy=r, —1,r, —2,...,0, only {7:,} and
{741, for 1 < i< Tand J, +1 < j < ry come back to the sample at
month ¢+ (m —1I)(r1+r2) = Jy and t+ 1+ (m —I)(ry +ry) — Jy, respectively.

(III) For each I = 1,2,... ,m—1and J3 = 1,2,...,r; — 1, only {7¢i;} and
{7410, for 1 <i<Tand 1< j<r; —Jsreturn to the sample at month
t+ (m—1I)(r1+r2) + J3and t + 14 (m — I)(ry + ry) + Js, respectively.
Define J3 = 0 when ry = 1.

Therefore, for each J; the respective proportion of overlapping between two
months t and t + J;, and t +1 and ¢t + J; + 1 are

m ri—J . m ri—Ji .
=1 Z]:l n’tvld and Zi:l 7=1 nt+1»'»1
m T1 . ‘ m 1 .
2o Zj:l Nty ity Zj:l Tet1.4,

For each I and J; the overlapping proportion between t and t4-(m—1I) (ri+ry)—Ja,
andt4+1land t+ (m—I)(ry+ry) — Jo+ 1 are

(A.1)

1 Ty o I r o
=1 Zj:]2+l Nt 4,5 and i=1 Zj:]2+l Rtt1,4,5

i1 251:1 Mt,4,5 2oty Z;lzl Tty

respectively; for each I and J3 the overlapping proportion between t and t + (m —
I)(ri+ry)+Js,and t+1and t + (m — I)(ry + 72) + J3 + 1 are

I - i -
Dict 2ogey Mg and Dim1 2oge1 Mt
P E;lzl Ng,i g PR 221:1 T4+1,4,5

(A.2)

(A.3)
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respectively. Since P70, 37 nes; = 3000, D001 neqra; and the overlapping
percentage depends on only time lag by the assumptions (i) and (iii), recursively
solving (A.3) from J3 = ry — 1 to 1 for each I, we have

Ngij = Ngprgyforl <ie<m—land1l < j <y — 1. (A
Similarly, from (A.2) together with (A.4), we have
Nigr = Netiir forl <e<m—1. {A.5)
Finally, the equation (A.l) with (A.4) and (A.5)
N,y = Np1my for 1 < j <rp—1. (A.0)
(A.4)-(A6) and 3518, 5700 ey = 200, D00L ) a1y yield
Ntsj = Niy1,45, for all ¢, . (A7)
Note that since y;,; ;-1 = Vi1, 1 <1 < m,2 < j < rg, we have
Ntij—1 = N1 forl <i<mand 2 <y <ry (A.8)

These (A.7) and (A.8) show that n,; ;’s and n¢41, ;s are all the same. Since this
is true for any two consecutive survey months, n;, ; is 1 for all t.4, j since there
is no sample when n;;; = 0. This implies that the necessary number of rotation
groups is mr; for each survey month ¢. Observe that {y;;;} and {4441, 41} for
J # r1 are the same subsamples from the definition definition of rT" —»7"~! design.
Hence {7;; ;1 =1,---,m} and {y;41,.} are different subsamples. But for each
I, Yt+1,i,1 can be corresponded to a v/, , ¢ = 1,--- ,m in the sense that 1,4,
and 74/, comes from the same rotation group since the rotation occurs in the
same rotation group by (ii). This shows that the mry subsamples at the month ¢
and t41 come from the same mr; rotation group, and hence mr; rotation groups
are necessary for the life of the survey since any two successive the same months
requires mr; rotation groups.

(b) Suppose a subsample is off for r; months. Then, during these r, months, the
subsample will be replaced by new subsample, and the new subsample remains in
sample for ) successive months. If such replacement happens ! times, [ =0,1,...,
during these ro months, we have ry = Iry since each replaced subsample has to
be surveyed for exactly r; successive months.
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In order to get an estimate of change between month ¢ and ¢+ k; HO,t=1,2,...,
we need overlapping over K - Ky months. Whether or not the overlapping occurs
depends on m, ry, and K;, K3. From (III) in (a), the last appearance of G; occurs
at month t+mr; 4+ (m —1)r, — 1. Hence, when mr; + (m—=1)ry—1 < K, I, we
have no overlapping for K- K, months. If mr; 4 (m—1)r,—1 > K (K,;+1). then
we may have overlapping for A (1 + K;) months. This gives Ky - K, —ri+1<
ri(m —1)(141) < Ky(K;y + 1) — r; for overlapping to occur.

The subsamples.only in {ye1,1, - s Ytm—mg+1.1} Teturn to the sample at month
t+ri(my—1)(141)+r; -1, and all subsamples in G; do not return to the sample
from the month ¢ 4+ r;(m5 — 1)(1 + 1) + r; to the month ¢ + miri(1+1) — ry by
(IIT) in (a). And then only vi,,,Yor,, - , Ym-m3,r, appear to the sample at month
t+mg(ri+ry) —ri+1. Therefore, by the definition of mg, there is no overlapping
between month ¢ and ¢ + K, - K5 when ri(mi—1)(14+0)+r —1< K;-K, and
mg(ry + 1) —r1 +1> Ky - K.

APPENDIX : Proof of Theorem 3.1

By the definition of rJ* — r;"_l design, for each given i = 1,2, ....m —1 the
subsample appearing in the sample for the irjth time at time ¢ returns to the
sample with appearance time i¢r; + 1 at the month ¢ + ry + 1. Thus Yeliry] =
Yetrp+1[ir1+1), i =1,2,... ,m—1. Since y;[ir;],1 < i < m—1 are simultaneously
rotated out at the month ¢t + 1 and rotated in the sample at the month ¢4 ry + 1,
it suffices to consider the subsample with the rotation group Ye[r1] to find the
condition satisfying :[r1] = Vyr41[r1 + 1]. We claim that the rotation group
7¢[r1] contains the subsample appearing in the sample for the [mod, {(j+1)m —
(J+1)m'+(j+1)}ri+1]th time at month t4jr +1 by rotation pattern given (3.1).
Suppose this is true. Since there is [ such that ry = Ir, { > 0,t+ry;41 equals to
t+Iri+1. Thus at the month t+1r;+1, mod,, {(I+1)m—(I+1)m'+(I4+1)}ri+1 =
r1 + 1. This means that

mod,{(Il+ 1)m — (I+ 1)m’ + I}r;
= modn{(I+ 1)mry — m'ry — m'ry + 73} =0 (B.1)

Because (I 4 1)mr; is multiple of m, the (B.1) is the same as mod,, {—m'ry —
m'ry+ry} = 0. Hence, this implies that mod,,, {m'ro+m'r - r;} = mod,, {m'r; +
(m' —1)ry} = 0. This shows Theorem 3.1.

To end proof of Theorem, we need the following Lemma.
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Lemma B.1. Let a,b and X be positive integer, then
mod, (b + modq(Ab)) = moda ((1+ A)b).

Proof: In is well known that mod,(b) = b — [a/b] - b where [-] is largest integer
less than equal to b/a. Therefore

mody (b + mod, (Ab)) = mod, ((1+ A)b— [Ab/a] - a)
= (14 N6~ (Ab/d] - a = [(1+X)/a ~ Db/a)] -a
= (1+Mb—[(1+A)b/d]-a
= mod, ((1+ A)b).

O

By the rotation pattern given in (3.1), we have y[r1] = yiq1[mod,,, (m — m’' +
1)ry + 1]. Since this rotation group retains in the sample until the month ¢ + ry,
Ye[r1] = Yeqr, [modp, (m — m’ + 1)1y +71]. Again now by (3.1), we can acquire the
position of rotation group at the month ¢4 r; + 1 by solving the equation (2m’ -
2—k)yry+ry = modm(m—m'+1)ri +r;. Then k =2m' —2 —mod,,(m —m'+1)
and by Lemma B.1,

Vegr +1[modm{m +m’ ~ 1= 2m’ + 24 mod,, (m — m’ + 1) }ry + 1]
=Yeqr 41 [modm{m —m + 1+ mod,,(m—-m'+1)}r + 1]
=Yttr 41 [modm(2m —2m 4+ 2)r; + 1)

Following the same fashion, we get ¥,12,, +1 [modm(3m —3m' 4+ 3)r) + 1] when
k=2m' - 2 — mod,,(2m — 2m’ + 2) in which k is obtained by equating (2m' —
2—k)ri+ry = modn,(2m —2m 4+ 2)r1 + 11, Yeg3e 41 [modm(“lm —4m' +4)r + 1]
when k = 2m’ — 2 — mod(3m — 3m' +3) , - -+, and ypqjr, 41 [mody, {(j + 1)m —
(J+1m + (G +1)}r1 + 1] when k= 2m’ — 2 — mod,,,(jm — jm’ + j). Therefore
we arrived at

Yelr1) = Yegjmnr[modin { (G + D)m — (G + 1)m' + ( + 1)}y + 1]

where j > 0.
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