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Regularity of Maximum Likelihood Estimation for
ARCH Regression Model with Lagged
Dependent Variables '

Sun Y. Hwang'

ABSTRACT

This article addresses the problem of maximum likelihood estimation in
ARCH regression with lagged dependent variables. Some topics in asymp-
totics of the model such as uniform expansion of likelihood funtion and
construction of a class of MLE are discussed, and the regularity property of
MLE is obtained. The error process here is possibly non-Gaussian.
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1. INTRODUCTION

In the traditional linear time series (or regression), the conditional variance
of one-step ahead prediction does not depend on the past information. The class
of models admitting additional information from the past to affect the condi-
tional variance is typically two-fold : random coeflicient autoregressions (RCA)
and autoregressive conditional heteroscedastic processes(ARCH). Whereas RCA
mainly studied by time series analysts assumes the conditional variance to vary
with past observations, ARCH models postulate the conditional variance evolving
with previous innovations (€) and are usually investigated by econometricians.

In a seminal paper, Engle (1982) introduced ARCH concepts in a time series
regression which have proven useful in modeling diverse econometric data includ-
ing inflation rate and stock prices. See, for instance, Bougeral and Picard (1992)
for a survey of numerous applications of ARCH models.

In this article we consider the following ARCH-regression model with lagged
dependent variables first suggested in Section 5 of Engle {1982) :

Y =219 + & (1.1)
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where the innovations {¢,} are defined by
€t thl/z © €t (1.2)
with
ht =ag+ oy €l (1.3)
Here z, is a vector of k - lagged dependent variables,

e = (Yot Yik) (1.4)

It may be noted that ARCH(1) component in (1,3) can be replaced by higher
order ARCH(m), viz.,

he =g+ arei 4+ amel (1.5)

Limiting results in this paper can be easily extended to ARCH(m) case and thus
we retain ARCH(1) structure for simplicity of presentation.

For the parameter estimation, Engle(1982) assumed the conditional Gaussian
model, equivalently, {e;} was assumed a sequence of iid N( 0, 1 ) variables, and
derived asymptotic distributions of ” maximum liklihood estimator (MLE, for
short) ” of paramaters. Weiss (1986) discussed the non-normal {e;} case and
provided limiting distributions of the least squares estimators as well as quasi-
MLE obtained by maximizing quasi-likelihood function derived as though {e;}
are, in fact, iid N( 0, 1). Regarding the expansion of the likelihood function, Drost
and Klassen(1997) investigated the local asymptotic normality for GARCH(1.1)
processes.

In the present paper we are concerned with case when {e;} are possibly non-
normal with pdf f(-), discussing some intriguing topics in parameter estimation
via likelihood function for the above mentioned model. Specifically, under a min-
imal set of conditions, discussed are the uniform expansion of the log-likelihood
function and the problem of existence and derivation of so called one-step MLE
obtained by approximating score function. Moreover some desirable properties of
MLE such as regularity and optimality are derived. In a general setting, in par-
ticular, covering pure ARCH models without regression component, discussions
comparable to ours have been treated by Drost et al. (1997) under some broad
assumptions. Those results established in this article have not yet been explicitly
addressed in the literature.
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2. PRELIMINARIES

Recall the model specified by (1.1) through (1.4) with possibly non-normal
{e;}. It will be assumed throughout that following conditions are satisfied.

(C.1) {e;} is a iid sequence of random variables with the marginal pdf f(-) of
zero mean and variance unity. Also e, is independent of ,_,, s > 1.

(C.2) @ = (ag, ay) is such that ap > 0,0 <y < 1.

(C.3) For the k x 1 vector of parameters ¢ = (¢1,--, ), all the roots of
k

1~ Z &; ) =0 lie outside the unit circle of z.
J=1

Remarks : From (C.1) and (C.2), it follows that the innovation process {¢;}
is strictly stationary, which in turn implies together with (C.3) that the observa-
tion process {y;} itself is also strictly stationary and ergodic.

Below we briefly mention the \/n - consistency of the least squares estimators
of ¢ and o (which is due to Weiss (1986)) for the quick reference in discussing
maximum likelihood estimation.

Denote the least squares estimators of ¢ = (¢1,- -, ¢x) and a = (ag, a1) by
érs and @pg , respectively. Thus, (f)LS and &pg are so obtained by minimizing
the objective function = Ze?/ht.

Result 1 (Weiss (1986)) : Under (C.1) to (C.3), plus Ey}! < oo , brs and
éps are \/n consistent estimator of ¢ and «, respectively and are asymptotically
normally distributed.

Remarks : Regarding conditions for Ey} < oo, it is well known for Gaussian
{e)} (see, for instance, Engle(1982)) that the condition is equivalent to o} < 1/3.
When {e;} are not necessarily Gaussian, we refer to An et al. (1997) for the
sufficient conditions for finite fourth (and higher) order moment of {y;}.

3. MAIN RESULTS

Let {y_k+1, - ,Yn} be asample and define the (k+2) x 1 vector of paramters

: B = (¢,a)". Also use the notation &,(8) = y: — z}¢, he(B) = o + a157_, (D)
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and e;(8) = €,(8)/+/h(B) in order to stress the fact that these are functions of
parameters 3. Denoting by In(53) the log likelihood function conditional on the
initial y_g41,- -+, Yo, it follows that

In(8) = 31 log flz4(8)/v/Re(B)]) - 5 log hu(8) ) (31)

Introduce A, () and w, (3) for the score vector and the sample Fisher information
matrix:

An(B) =0In(B)/9B : (k+2) x 1 vector (3.2)

wn(B) = —0%In(B)/08% : (k+2) x (k+2) matrix (3.3)

Also, define the limiting average Fisher information by F(3), viz.,

F(8) = plim{ n~"wy(8) ] (3.4)

where the existence of F() is secured by the ergodic theorem.
Let us now consider the following Cramer-type conditions on the density f(-)
of e;.

(C.4) For the location-scale family of densities
{ glec: a,b) :b‘lf[et—;a-], ~00 < a<00,b>0}

there exists a integrable B(e;) and a constant ¢ > 0 such that for all a and b with
la] < cand |b—-1| < ¢

| 8*log gle; : a,b)/8a'0b | < B(e;)

where ¢ and j are nonnegative integers summing to 3.

In what follows, fix 3 representing the true parameter value and introduce
Bn : a sequence of parameters converging to the true value 3 (as the sample size
tends to infinity) in such a way

Ba=B+6/Vn (3.5)
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with § being a finite (k 4 2) X 1 vector of constants.

Theorem 1 : Suppose that Ey? < oo. Conditions (C.1) to (C.4} then im-
ply as n — oo:

For given M > 0,

(i) Uniform local expansion of log-likelihood ;

sup [1(3,) ~ In(8) ~ {7An(8)/Vi = 58F(3)8 1] = 0,(1)

1sl<M
(ii) Asymptotic normality of A, (B) ;
_ d
n2A,(8) = N(0,F(8)) (3.6)
(iii) Uniform local linearity of An(B) ;

sup [ An(Bn) — An(IB) + wn(ﬁ)(ﬁn - B) ] = Op(l)

1s1<M

Proof : (i) By a Taylor’s expansion of In(3) we obtain

In(8,) — n(8) = S An(8) [Vt~ 5-8'wn()3 + Ra5)  (3)

where R,(-,-) is the remainder consisting of third order derivatives with respect
to B and f3* lies between 3 and ,. Denoting as in (C.4)

€ — a

gley 1 a,b)= b_lf[—b———]

it can be written that
In(Ba) =Y glecs n™ 261 /ha(B) ) (he(B)/he(Bn))"? ] (3.8)
t=1

where k X 1 vector of constants &; is as defined in & = (47, 4,)".

Also, it follows from Ey? < oo that E[ sup |z}6;|]° < oo and hence
1s|<M

sup sup |2301] = op(v/n)

|8|<M 1<t<n

which in turn implies using h:(8) > ag > 0,

sup sup |n™"22}61/he(B)] = 0p(1) (3.9)

I5]<M 1<t<n



14 Sun Y. Hwang

It can also be similarly verified that

sup sup |———ht(ﬁ)

— 12 = 0,1 3.10
lsl<m 1<i<n Pt(Bn) p(1) (3.10)

Consequently, combining (3.9) and (3.10) and using (C.4) it can be deduced that

sup |Rn(8",8)| < n™2M3. sup B(e;)/6 (3.11)
[s|l<M 1<t<n

where B(-) is defined in (C.4). The integrability of B(-) implies that

sup Bf(e;) = op(n)
1<t<n
which leads to the assertion (i) since n~'w,(B) converges in probability to F(3).
(ii) Note that A,(8) is a sum of zero mean martingale differences. A little
algebra reveals also that each martingale increments has a variance F(j3) defined
n (3.4). This essentially yields (ii), by employing the martingale CLT.
(iii) The verification of (iii) follows on a similar lines as in the proof of (i),
making crucial use of (C.4) and hence it does not bear repetition.

We now define Cyyy, : a class of maximum likelihood estimators of 3. viz. .
Cymr = { Bumr; Bur = tn + wy (t) An(ta) } (3.12)

where t,, stands for a preliminary \/n - consistent estimator of 3. It is worth in-
dicating that Cisr, is non-empty since one may substitute BLS: the least squares
estimator of 8 for ¢,,. Furthermore, ﬁn being usually referred to as the MLE of
3, obtained as a root of the ML-equation: An(Bn) = 0, belongs to Cyp.

Theorem 2 : Let By be any member of Cyp. Under (C.1) to (C.4), By
is regular in the sense that along with f3,

V(B — Bn) 25 N(0,F~1(8)) (3.13)

Remarks : (1) Under 3,, Bn — Bn represents estimation error converging in law
to zero mean normal distribution, which is a desirable property that a ”good”
estimator of 8 may possess. (2) Setting § = 0 in f,, (3.13) reduces to the
asymptotic normality of 8xsp, under the true paramer (3, i. e.,

Va(Bur - 8) -4 N(0, F~Y(8))
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Proof : It is deduced from (i) in Theorem 1 that two probability measures
associated with 3, and 3 (call these P, and Pg, respectively) are contiguous
(cf. Roussas (1972), ch.2). Thus for any F,-measurable random quantity, say
Sny Sn = 0,(1) under Pg, is equivalent to Sp = 0p(1) under P3. Moreover it can
be verified from (i) and (ii) in Theorem 1 via the Le Cam’s Third Lemma (e.g.
Hall and Mathiason (1990)) that under Py, In(3,) — In(8) converges to normal
distribution with mean 6'F(3)6/2 and variance 6'F(3)d. Consequently it follows
that along with 3,

n"V2A,(8) 5 N(F(8)5, F(B)) (3.14)

Write that for t,, such that \/n(t, — 8) is bounded in probability
Vi (Bup—8) = Valta+ i (t)Aults) = 5]
= Valta+wy (O{ An(B) = wn(B)(ta = )} = 31+ 0p(1)

where the uniform local linearity of A,,(3) addressed in (iii) of Theorem 1 is used.
After summarizing one can reach at

VaBar —B) = [ wa(8) 17 n T 2AL(8) + 0p(1) (3.15)

Also, n™ 1w, (B) converges in probability to F(3) under P3, and Pg as well, which
in turn implies by exploiting (3.14) that

ViBun - B) -5 N(6,F1(8)), under By

Or, equivalently, along with 3,

Va(BmrL — Ba) = N(0,F~L(3))

which concludes the theorem.

Indeed, it can be deduced further from Theorem 1 that BML € Cprp en-
joys certain asymptotic optimality properties under various criteria : asymptotic
minimaxity and the minimum variance of the limiting distribution. Refer to
Sweeting(1980) and Hall and Mathiason (1990) for relevant discussions.



16 Sun Y. Hwang

ACKNOWLEDGEMENT

Thanks are due to two referees for a careful reading of the paper

REFERENCES

An, H.Z., Chen, M. and Huang, F.C.(1997). "The geometric ergodicity and
existence of moments for a class of non-linear time series models”. Statistics
and Probability Letters, 31, 213-224.

Bougeral, P. and Picard, N.(1992). "Stationarity of GARCH processes and some
non-negative time series”. Journal of Econometrics, 52, 115-127.

Drost, F.C. and Klaassen, C.A.J.(1997). "Efficient estimation in semiparametric
GARCH models”. Journal of Fconometrics, 81, 193-221.

Drost, F.C., Klaassen, C.A.J. and Werker, B.J.M.(1997). ” Adaptive estimation
in time series models”. Annals of statistics, 25, 786-817.

Engle, R.F.(1982). ” Autoregressive conditional heteroscedasticty with estimates
of the variance of U.K. inflation”. Econometrica, 50, 987-1008.

Hall, W.J. and Mathiason, D.J.{1990). "On large-sample estimation and testing
in parametric models”. International Statistics Review, 58, 77-97.

Roussas, G.G.(1972). Contiguity of Probability Meausures: Some Applications
in Statistics. Cambridge Univ. Press, London.

Sweeting, T.J.(1980). ”Uniform asymptotic normality of the maximum likeli-
hood estimator”. Annals of Statistics, 8, 1375-1381.

Weiss, A.A(1986). ” Asymptotic theory for ARCH models: estimation and test-
ing”. Econometric Theory, 2, 107-131.



