Abstract
The optical constants ($E_g^d$, n, K) of the polycrystalline CdSe thin films deposited on the glass substrate by the electron-beam evaporation technique are determined over 400~2,500 nm photon wavelengths. In order to explain the variation of the optical contents with film thickness and substrate temperatures, the surface microstructural parameter are investigated by AFM (atomic forced microscope( images for the films deposited by different growth conditions. It is shown that the variations of optical constants are close related to changes of the surface morphology of the CdSe thin films. The decrease in the band gap with film thickness is connected with quantum size effects due to increase of the grain size. The refractive index of CdSe films decrease with increasing the grain size of the films, and the dispersion of the refractive index followed a single oscillator model according to the Sellmeier formulation.