Biodegradation of Bunker-A Oil by *Acinetobacter* sp. EL-081K

Hee-Goo Kim, Geun-Tae Park, Hong-Joo Son*, and Sang-Joon Lee

Department of Microbiology, Pusan National University, Pusan 609-735, Korea *Department of Biotechnology, Miryang National University, Miryang 627-702, Korea

(Manuscript received on November 27, 2000)

Bunker-A oil-degrading microorganisms were isolated from a marine environment using an enrichment culture technique. The isolated strain EL-081K was identified as the genus *Acinetobacter* based on the results of morphological, culture, and biochemical tests. The optimal temperature and initial pH for bunker-A oil degradation were 25°C and 7.0, respectively, including aeration. The optimal medium composition for the degradation of bunker-A oil by *Acinetobacter* sp. EL-081K was 10 ml/l bunker-A oil as the carbon source and 0.1% (NH₄)₂SO₄ as the nitrogen source. Under the above conditions, the biodegradability of bunker-A oil was 38% after 96 hours of incubation. The addition of detergent did not increase the bunker-A oil degradation.

Key words: Acinetobacter, Bunker-A oil, biodegradation

Introduction

In modern industry, oil is a very important source for energy and chemical synthetic materials. Accordingly, as global oil production continues to increases daily, the potential for oil reaching aquatic environments has also increased, particularly as a result of accidents involving supertankers. ^{1,2)} Oil mainly consists of hydrocarbons (50 to 98%), plus variable amounts of oxygen, sulfur, and nitrogen. As such, oil is recalcitrant and acts as a pollutant when in contact with the environment. ^{3,4)}

In 1946, Cladue E. Zobell reported that many microorganisms have the ability to utilize petroleum hydrocarbons as sole sources of energy and carbon and that such microorganisms are widely distributed in nature.⁵⁾ The potential for using such microorganisms in the degradation of oil and its constituents, thereby minimizing contamination due to oil leaks and spills, has prompted a number of investigators to study this process.^{6~9)} Several microorganisms, including *Pseudomonas* sp. and *Acinetobacter* sp., have been reported to degrade hydrocarbons in crude oil.¹⁾

This report describes the isolation and characterization of a bunker-A oil-degrading bac-

terium, Acinetobacter sp. EL-081K.

2. Materials and Methods

2.1. Isolation of Bunker-A Oil-Degrading bacterium

Seawater samples collected from Masan and Ulsan bay were inoculated into a liquid isolation medium in test tubes, then the samples were incubated at 30°C in a shaking incubator(180 rpm) for 7 days. The cultures with positive bacterial growth were diluted and spreaded on isolation plate media and incubated at 30°C for 7 days. The morphologically distinct single colonies were then screened for their ability to degrade bunker-A oil. The isolation medium for the bunker-A oildegrading bacteria was composed of 0.5g NH₄Cl, 0.5 g K₂HPO₄, 1.0 g Na₂HPO₄, and 10ml bunker-A oil per 1,000 ml of aged seawater. The selected strain, EL-081K, was identified according to Bergey's Manual of Systematic Bacteriology and the Manual of Methods for General Bacteriology¹¹⁾ based on its morphological, culture, and biochemical characteristics.

Characteristics of Bunker-A Oil-Degrading Bacterium

The effect of temperature, pH, bunker-A oil concentration, nitrogen source type and concentration, and aeration on the rate of bunker-A oil degradation by a selected isolate were investigated. The temperature was controlled based on the submersion of a 250 ml Erlenmeyer flask in a circulating water bath($10 \sim 30 \text{ °C}$). The effect of pH was determined using a mineral salt medium adjusted with HCl or NaOH to the appropriate pH value(pH $4.0 \sim 10.0$). The effect of the Bunker-A oil concentration was investigated using a mineral salt medium containing different concentrations of bunker-A oil as the carbon source($2 \sim 22 \text{ ml/l}$). Different levels of aeration were obtained by varying the amount of medium in a 500 ml Erlenmeyer flask and keeping the agitation constant. The optimal conditions identified were then used to determine the effect of adding a detergent.

2.3. Assay of Cell Growth and Bunker-A Oil Degradation

The cell growth was detected by measuring the culture supernatant turbidity at 660 nm using a spectrophotometer(Shimadzu UV-240) after any residual bunker-A oil had been extracted from the cultures using CCl₄ as the solvent. The residual bunker-A oil content in the CCl₄ extracts was estimated using an oil-content analyzer(Horiba OCMA-200).

Results and Discussion

Isolation and Identification of Bunker–A Oil–Degrading Bacterium

Three strains capable of degrading bunker-A oil were isolated from the seawater samples. Among them, the bacterial strain EL-081K exhibited the highest degradation activity for bunker-A oil. The taxonomical characteristics of the isolated strain EL-081K are presented in Table 1. The strain was found to be a non-motile, Gram-negative, and short rod-shaped bacterium, which was also catalase-positive, urease-negative, and strictly aerobic. It exhibited a negative reaction to H₂S production,

amino acid decarboxylase, and methyl red tests, whereas a positive reaction to citrate utilization and Voges-Proskauer tests. Therefore, according to Bergey's Manual Systematic Bacteriology, ¹⁰⁾ the isolated strain EL-081K was identified as a strain of the genus *Acinetobacter* and tentatively named *Acinetobacter* sp. EL-081K-14.

Table 1. Taxonomical characteristics of isolated strain EL-081K

Contents	Characteristics		
Cell shape	Short rod		
size(μm)	$0.4 \sim 0.8 \times 1.8 \sim 2.2$		
Gram stain	-		
Motility	-		
Spore formation	-		
Cell division	Simple division		
Colony shape	Circular, entire, convex		
surface	Smooth		
color	White		
opacity	Opaque		
Gelatin liquefaction	-		
Anaerobic growth	-		
Catalase	+		
Oxidation/Fermentation	oxidation		
Growth at 22°C	+		
eta -galactosidase	-		
Arginine dehydrolase	-		
Lysine decarboxylase	-		
Ornithine decarboxylase	-		
Citrate utilization	+		
H ₂ S production	-		
Urease			
Indole production	-		
Voges-Proskauer reaction	+		
Nitrate reduction	-		
Pigment production	-		
Growth on MacConkey	+		
agar			
Gas production from	+		
dextrose			

Characteristics of Bunker-A Oil Degradation

To increase the degradation of bunker-A oil, the growth conditions of *Acinetobacter* sp. EL-081K were investigated. The effect of temperature, as shown in Fig. 1, exhibited maximum growth at 25°C. The effect of pH, as shown in Fig. 2, exhibited maximum growth and bunker-A

oil degradation at pH 7.0. Below pH 6.0 and above pH 8.0 the growth and bunker-A oil degradation were seriously inhibited.

Fig. 1. Effect of temperature on the growth of Acine-tobacter sp. EL-081K. Symbols: ●, 10°C;
∇, 15°C; ■, 20°C; ♠, 25°C; ♦, 30°C.

Fig. 2. Effect of pH on the growth and biodegradation Acinetobacter sp. EL-081K. Symbols: , growth; , residual oil.

The effect of the bunker-A oil concentration on the growth of *Acinetobacter* sp. EL-081K was investigated using media containing different concentrations ranging from 2 to 22 ml/l. As shown in Fig. 3, a concentration range of $10\sim14$ ml/l exhibited the best growth, whereas above 20 ml/l, the growth was significantly inhibited.

Various organic and inorganic nitrogen sources were investigated to determine the most suitable nitrogen source for growth and bunker-A oil degradation. 0.05% of each nitrogen source was added as the sole nitrogen source to media containing 10 ml/l bunker-A oil. As shown in Table 2, (NH₄)₂SO₄ was identified as the best

Fig. 3. Effect of oil concentration on the growth of Acinetobacter sp. EL-081K.

nitrogen source for growth and bunker-A oil degradation at an optimal concentration of 0.1%.

The effect of aeration, as presented in Table 3, showed maximum growth and bunker-A oil degradation with a medium volume of 100 ml in a 500-ml Erlenmeyer flask. A higher medium volume of 200 ml reduced the growth and bunker-A oil degradation, thereby indicating the existence of a critical concentration of dissolved oxygen.

Fig. 4 shows the relationship between the cell growth and the degradation of bunker-A oil during the cultivation of Acinetobacter sp. EL-081K in an optimal medium containing 10 ml/l phenol. After 96 h, the strain was able to degrade 36% of the initial bunker-A oil. The addition of various detergents to the optimal medium inhibited the bunker-A oil degradation(see Table 4).

Fig. 4. Effect of oil concentration on the growth of Acinetobacter sp. EL-081K.

Table 2.	Effect of nitrogen	SO	urces on	growth	and
	biodegradation	of	Acineto	bacter	sp.
	EL-081K				

Nitrogen sources	Growth	Biodegradation
(0.05%)*	(A _{660nm})	(%)
NH ₄ Cl	0.53	30
(NH ₄ NO ₃	0.48	29
(NH ₄) ₂ SO ₄ 0.05%	0.61	33
0.1%	0.74	36
0.2%	0.47	29
0.3%	0.36	26
0.4%	0.24	17
0.5%	0.21	12
1.0%	0.12	5
KNO_3	0.52	16
NaNO ₃	0.56	26
Bactopeptone	0.60	17
Yeast extract	0.55	30
Beef extract	0.53	18
Casamino acid	0.63	22
Polypeptone	0.59	27
None	0.31	1

^{*} Except for (NH₄)₂SO₄.

Table 3. Effect of aeration on growth and biodegradation of *Acinetobacter* sp. EL-081K

Volume of medium		Biodegradation (%)
(ml/500ml shaking flask)	(71660nm)	(70)
50	0.68	29
100	0.63	34
150	0.54	27
200	0.51	14
250	0.32	9
300	0.17	4

Table 4. Effect of detergents on biodegradation rate (%) of Acinetobacter sp. EL-081K

Concentration	5ppm	10ppm	15ppm	20ppm
Detergents				
Span 40	31	32	26	18
Span 80	29	35	30	27
Triton N-42	5	12	9	2
Triton X-45	0	0	0	0
Triton X-100	3	6	3	1
Tween 40	21	24	20	15
Tween 80	17	13	11	14
Lauryl betaine	26	29	17	9

Acknowledgement

This study was supported financially by the Korea Science and Engineering Foundation through the Institute for Environmental Technology and Industry(IETI), Pusan National University, Korea(Project number: 99-10-05-02-A-3).

References

- [1] Petrakis, L. and F.T. Weiss, 1980, Petroleum in the marine environment, American Chemical Society, Washington D.C.
- [2] Singer, J. T. and W. R. Finnerty, 1984, Genetics of hydrocarbon-utilizing microorganisms, p.299-354. In R.M. Atlas (eds.), Petroleum Microbiology, Macmillan Publishing Company, New York.
- [3] Baker, J.H. and R.P. Griffiths, 1984, Effects of oil on bacterial activity in marine and freshwater sediments, p.546-551, In M.J. Klug and C.A. Reddy (eds.), Current Perspective in Microbial Ecology, American Society for Microbiology, Washington, D.C.
- [4] Clark, R.C. and D.W. Brown, 1977, Petroleum: properties and analyses in biotic and abiotic systems, p.1-89. In D.C. Malins (ed.), Effects of petroleum on arctic and subarctic marine environments and organisms, Academic Press, Inc., New York.
- [5] Zobell, C. E., 1946, Bacteriol. Rev., 10, 1-49.
- [6] Horowitz, A., D. Gutnick and E. Rogenberg, 1975, Appl. Microbiol., 30, 10-19.
- [7] Jobson, A., F.D. Cook and D.W.S. Westlake, 1972, Appl. Microbiol., 23, 1082-1089.
- [8] Kim, S.H., C.S. Kim, I.S. Cho, S.Y. Choi and K.H. Min, 1990, Kor. J. Microbiol. 28, 71-75.
- [9] Resfeld, A., E. Rosenberg and D. Gutnick, 1992, Appl. Microbiol., 24, 363-368.
- [10] Krieg, N.R. and J.G. Holt, 1984, Bergey's Manual of Systematic Bacteriology, The Williams and Wilhins Co., Baltimore.
- [11] Gerhardt, P., R.G.E. Murray, R.N. Costilow and E.W. Wester, 1981, Manual of Methods for General Bacteriology, American Society for Microbiology. N. Y.
- [12] Devereuk, R. and R.K. Sizenore, 1980, Ind. Microbiol., 22, 409-414.