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ABSTRACT

An outpul feedback contro] (OFC) 15 presented for a linear stochastic system with known disturbance and

applied 10 a flexible spacecrall for the reduction of residual vibration while allowing the natural deflection during

operation. By converling the tracking problem into the regulator problem, the OFC minimizes the expected value

of a guadralic objeclive function composing of error states which always remain on the inferseclion of sliding

hypersucfaces. For the numerical evaluation with a flexible spacecrafi, a large slewing maneuver sirategy is

devised with a iracking medel [or nominal trajectory and a starl-coast-stop siealegy for economical maneuver in

conjunction with the inpul shaping techinique. The peiformance and elficacy of the proposed control scheme are

ilustrated with the comparison of dilTerent maneuver strategies.

Keywords :

1. Introduction

In the future genaiation of flexible spacccraft, the
control systetn design will be a challenging problem
because of their special dynamic characteristics which
welude a large number ol signilicanl elastic modes
with very small inherent damping, inaccuracies in the
knowledge of system and nonlincar
The

multi-input, multi-outpul (MIMO) configuration. As a

paramelers,

elfects. control methods are relaled  with
result, it is vatural 1o use an oplmal formulation 1o
design a controller. However, stringent stability and
1ehustness are required due o the space operation. In
arder Lo satisly these requirements, many algorilhms
have been proposed by employing optimal coniral,
adaptive contiol. sliding-mode conlrol(SMC), ele.
Sliding-mode control has been used exlensively in
robotics [1], w which state information is readily
available. Slotine proposed the boundary layer concept
lo reduce the chatleiing problem by introducing a
linear fimction within the swilching region. In ihe
application of SMC te flexibie structures, Oz and

Mostzfa investigated a switching mechanism, stability,

MNonlinear Control, Input Shaping, Vibraiion Reduclion, and Kalman Filtering

interaction  with unmodeled dynamics, and the
chattering problem with general nponlinear systems.
They determined that the chatlering issue 15 not the
of 8MC, but

truncation effecls are. Young and Ozguner combined

main  obslacle of the application
SMC with a frequency weighled optimal formulation
[4] to reduce the chattering due to rapid swilching
logic. Sinha and Miller proposed a optimal SMC with
Kalman {ilter 1o reject stochastic broadband Lorque
disturbances. As a matter of facl. Ulkin  imtially
the SMCs for muli-variable cases by

taking an oplimal cost functional. [t is possible lo

developed

combine SMC with an cstimator as long as stale
esfimation is asymptotically convergent io the true
stales [G]. However, an estimeior-based SMC has not
been adequately addressed

In the paper, an output feedback contraller {OF(C)
is, [rstly, presented for a linear stochastic system
with known disturbances In the following scctions, it
analyzes the dynamics of closed-loop svstem and
of
sliding hypersurfaces. The robustness and inleraclion

discusses the constant oplimal gain selection

by upmodeled dynamics is considered. Secondly, in
the numerical application of the OFC lo the SCOLE
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{Spacceraft Control Laboratory Experiment) moedel, a
tracking model is presentod with arbitrary influence
by
maneuver slralegy are

vector which is chosen the control system

designer. A discussed for
cfficient control implemeniation in conjunction with
the input shaping technique. For ihe worst scenavio to
the control scheme, the exireme case with no damping

elfect is discussed for the performance of the OFC.

2. Output Feedback Control

Consider a linear slochastic system with known

disturbances
(5= A+ BulH+ La(H+ DD {n
()= Ca{ ) -+ () (2

where state vector =1} = Rk, inpul vector uft =

R™ and output vector yf) & R. The D(7) contains
known disturbances which can be nonlinear functions.
it is assumed that /4,8) and (4.C) are controllable
and observable, respectively. The plant disturbance
vector wit) and the sensor noise vector v conlain
independent while-noise processes with zero mean as

their elements. Their covariance malrices can be
defined as

Ew(fu(n) '] = Q3(i— 0 3)
Elv(el D) 1= Re(1— 1) 4
where §(¢— 1) is the Dirac della function. The
estimator dynamics [or slate eslimation can be

expressed as

2= A0+ Bul )+ DX+ K L9 — CZD] (5
where the Kalman gain £r is obtained by
Ke=pP,C'R! (6)
(N

If the prescribed configuration vector z*(#5 is

P=pPAT+AP+Q-PCTRCP

considered, the configuration error veclor can be
expressed as

z (0= 2(H—2"{(1) 8
2=z, (N+z"{fH into Eq (5), the

error dynamics is expressed in lerms of the erior state

Introducing

vector X.(t.
zt0=Az )+ Bu(H+ DD

i (9
+HEAWH—Cz (B]— 27(D

106

2

The m hypersurfaces passing through the origin of
the error state-space are delined as
sin=glzn =12 (1)

The control consists of a reaching phase, in which

|t

the system moves from ils initial position in the state
space 1o the sliding swface, and a sfrding phase, in
which it moves along the sliding surface to the origin.
The sliding surface eftractivity condifion is typically
defined as

548 5 (8=,

i=1,2, (11)

The attractivity condition and the error dynamics Eq.

"

{9) yield the egquivalent controller defined as the
solution of s(H=0 (i=1,2,--, w2):

uﬂ,(i):*(GB)_LG[(AfK,C_)E(f) (12)
+E 8+ D — 27 (D]

where G=[g,.g3-g..]. From Eq. (10), the sliding

surface is writlen as

S =Gz (D

where S(f)=1[s(2).s2()s,(A] 7.

In faci, the cquivaleni control is an ideal sliding

(13)

motion on S{)=0. In order to satisfy the reaching

conditions, a switching logic is used for the

realization ol a smooth sliding motion. In practice, il
by
arbitrarily closely within the limilations of the conlrol

can be approximated the reaching controls
switching devices which are relaled to an infinite
switching frequency ol controls about the ideal sliding
motion. As a result, i1 becomes a nonideal sliding
motion which results in chatlering metion. In the
practical applications of classical SMC for controlling
flexible sysiems, the challer phenomenon can cxcite
the unmodeled flexible modes. In this paper, a global
asymptotic reaching lechnique [2, 3] is employed to
guaraniee  convergence without an  overshooling
problem in the sliding region, so that the overall
maneuver is accomplished smoothiy. The control law

is chosen as

wlf=u 85— (GE) ~'P.S(H (14

where P = 777" is selected. As a result, using Eq.

(12), Eq. (13) and Eq. (14), lhe oulpul feedback

control law is expressed as

wd)=—(GB) GA-K QD+ PGz D) (15
+ GO+ 6GD(H— G 27 ()
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Notice that the contrel law includes the direct
feedback of the output, estimated states, and tracking

trajectory.
3. Analysis and Gain Selection of OFC

In the seclion, the dynamics i the closed-loop

control svstem is invesligated. The optimal gain
selection of sliding hypersurface is, then. discussed.
Lasily, the robusiness is considered for chatiering

1855UE.

3.1 Dynamics of Closed-Loop System

The behaviors of the closed-loop system and

estimator can be investigaled by defining lhe
estimation error.
#Hn=z00— 2 {16)

Using Eq. (1) and Eq. (5), the ewror dynamics is
expressed as

D= (A~ K,C 20+ L)) — K aX 1) (17

In terms of 2. Eq. {(15) can be written as

u )=—(GB) "'l LA~ K0+ GKC— P .Ga( 1)
- GA—KO = PG z(0 + GE(H(LB)

+ 0D+ PG — Ga ()]
(18) into Eq. (1), the closed-loop

dynamics can be expressed as

2 =[A-QA-B(GB) "'P.G)=($
+[AA-K,C)—BIGR) T'\P.Gl=(p
+ LD — 2K p(i)~ B(GB) 'P .Gz * ()
+02z%(n
where Q= E{GE) ~'G. The closed-loop dynamics
are driven by estimation error, noises, and lracking

Substituting Eq

(19)

commands. Now, the augmented svstem of Eq. (17)

and Eg. (19) is given as

{i;((?) =[A—%A+F Q(ﬂffgg%‘ [E(cfr))} (20)
- 9K e E G R
i3 F R e

where I'= B(GB) ‘P .G.
Since the augmented sysiem is block triangular,
A—QA+T
A—0QA+ T is the
feedback
separalion

the eigenvalues are those of and

A-K .

closed-loop  plant

It is shown that

matrix  for full-state

prablem. As a resull, the eigenvalue

principle helds so that the controller and estimator

can be independentiy designed.

Lemma 3.1 The w1 eigenvalues of
A— QA+ B(GB) TP, by —P,

matrix and the remaining k-m eigenvalues can be

are decided
arbitrarily placed in the S-plane by a proper selection
of G since the system (4,8) is controllable.

The proof of Lensma 3./ can be presenled by the
manner of the arlicle by Utkin (1992). Let ihe

columns of a matrix €, consist of basis vectors of

the null space of BY. The coordinate transformation
is delined by

w() =Mz (D 20
where the matrix M is composed ag

— Ql oke)

=[5 | @)

By substituting Eq. (21) inlo Eq. (1) and ignoring

noises, the transformed equation can be expressed as

y(H= Ap()+ Buld+ D (23)
where
A=nAM"
B=MB 24
D=MD

Since ihe matrix A consists of the orthogonal basis of
BT, the first k- rows of B are zero. Therefore, the
Vector

7 £is partitioned such that »,(f) is km

7208
dynamic equation can be presented as
gi{fl= Aumd+ A0+ D ()

vecior and is m vector. The partitioned

(25)
?fig(f): Agﬂ?[{ﬂ“F _4m?]g(t)+Bﬂ({f)+ Dg(.f){ZG)

Then, Sf# can be written as
S(H= s O+ K g,(8) @n
Far a [ull-state feedback problem, the gain G is
obtained by equating Eq. (13} with S as
G=[K,, I"1 M

Substituting Eq. (27) into Eg. (25) and using global
reaching fechnique [2], the system dynamics for

28)

full-state feedback problem can be presented as

g ] o R
2

Since the closed-loop system matrix for full-state
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feedback problem is A—2A-+ B(GB) 'P,G and the

eigenvalues remain unchanged under similarity

transformation, the cigenvalvues of
A-QA+BGB T'PG are k-m eigenvalues from
A, —A K, and m eigenvalues from -P.. In sliding

surface, 7;=—K, p, eigenvalues of A,—A K,
can be arbitrarily placed in the § plane by proper
selection of X, [6]. In the analysis of the closed-loop
dynamics, the feedback term for the attitude control is

not considered due to Lhe negligible coordinate.

3.2 Optimal Gain of Sliding Hypersurfaces
As implied in the derivation of the coatrol law,
the tracking problem is reduced to ihe regulatot
problem  with  full-stalc  feedback by
2 L0= Z(H—=z%(H. The idea can be used for the

decision of the matrix G which

taking

minimizes the

quadratic objective function:

7=[ 200z tpa (30)

where (J; is symmelric and positive semidefinite.
Using Eq.(21),

7= 7T QM wbar (31
With the property of similarity transformation, the
(M~ D 7M™, which is symmetric and

positive semidefinite defined as

= g =l 9
NT R

Hence, the perfoimance index can be expressed as

7= [T 0@2.(0+ 07 (D Raal )
+25 {(ANy (1)) at

matrix

(32)

(33)

As a standard linear quadratic problem Egq. (33), the

optimal feedback gain malrix [8] is writen as

K.=(R AL, P;+NT] (34)
where
Ong(AH‘*AIgR_IA‘IT)“‘(AE—A-rRilAf‘;)Pz (35)

—PyARRTALP+ Q- NRTINT

The oplimal gain & is obtained by substituring Eq.
(34) into Eq. (28). However, lhere is a question as 1o

whether or nol the choice of G minimizes the

stochastic  objective  lunction  similar  to  the

deterministic case. As long as the objective funclion

108

the

aptimality of J in a stochastic sense is guaranteed [9].

meets  linear quadratic  Gaussian  problem,

3.3 Robustness of Reaching Dynamics

Due to the chattering issue of the sliding-mode
controller, it ulilizes the globally asympiotic reaching
technique based on an ideal linear model. In order to
evaluale the robustness of the techmique in the
presence of non-ideal effects such as paramcter
uncertainty, time-varying dynamics and intemal or
external disturbances, one can check that the ideal
sliding surface is guaranteed.

Eq. (1) with non-ideal elfecls can be expressed as
) =Azd ~ Buli) + 4F (36)
where )/ accounts for all nonideal effecls. if a

controller is designed with a linear dynamic model

with globally asymptotic reaching technique, the
conirol law can be obtained as

w()=—(GB) "'[P.G+ GAlz(d (37
Now, il the control law is applied to Eq.36), the

reaching condition can be written as
ST SO =(Gal ) "[GA=() L GBi§)+ Gdfl 39,
={(Gz(£) "[— PG+ Garl
The reaching dynamics can be expressed by

SD=—P 5O+ Gdf (39

Therelore, the reaching dynamics is stable with Jf

since P >(. The sieady-state solution of Eq. {39)

can be given as

SES:IJ-ﬂre_P,(,‘—rJGﬁfdz_ (40)

Heunce, due (0 1he nonideal effects, there 15 a
steady-stale error as { —oo so that it cannol reach an
equilibrium point. As a rule of thumb in sliding-mode
controller design, it is possible 0 compensate the

error by a large matrix P, [2].

4. Application to SCOLE Maodel

The SCOLE system modeled by Meirovitch and
Quinn (1987) is shown in Fig. | by accounting for
bending and linear functions for axial and lorsional
deformalions. A ol
differential  equalions

nonlinear
found
reference [10]. By using a perturbaijon approach, the

sel simulianeous

ordinary can be in
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equations are separated into a set of equations for the
rigid-body molions, reprosenting zero-order effects,
and a set of equations [or the small elastic motions
and deviations from the rigid-body motions,
representing [irst-order effects. Their approach permits
that is

g maneuver stategy independent on the

deflection control. Based on their formulation, a

control scheme in Fig. 2 is designed with the OFC.

4.1 Elastic Tracking Model

A tracking model is presented 1o generale desired
elastic states so that the natural deflection of a system
is experienced. The structural equation of the SCOLE
mast, for which the slate estimalar is designed with
the assumption of the direct measurement of the
rigid-bady states, could be written as
A Cy 2Ky 2 =F;

—D(z, 2, 2, zp

(41)
where 0,0z, zn 2. _Q.j) is considered as a
disturbance term including stiffening, gyroscopic. and
coupled lerms and the subscripts r and 7 stand for
rigid-body and flexible-body, respectively,

The tracking model could be obtained [rom Eq.
(41) by excluding time-varying matrices and internal
forces so that the tracking model provides ideal
clastic stales lo a coniroller. [t scrves as a nominal
linear trajectory lor a [lexible-body dynamics. Using
the modal analysis. the transformation beiween the
tracking model and Eq. (41) is obtained by

ZAN=Tz L0 (42)
where 7=R°° is an set of eigenveclors. The
tracking medel is expressed as

D 2w, 2 0 o' s (h=—pT A G (43)

where A, is defined as an influence mairix obtained

by the terms of Eq. (41) assaciated with 6 which
will be the designed angular acceleration in numerical
cvaluation. The § and @, are the damping

coefficient and the natural frequency, respectively.
Hence, the right hand side [11] ol the Eq. (43) is
accounted lor a tangential Torce associated with the
desited angular displacement. The _px is a scaling
factor which can be used in the case of a high
angular velocily mancuver in order to operate the
wilhin either an elastic a small

syslem range or

109

deltection. The tracking model Eg. (43) is employed

for the generations of the desired eloslic slates.

4.2 Start-Coast-Stop Maneuver Strategy
the like with  the
zero-order perturbation, the axis ol rotation is not

In rigid-body maneuver

necessarily a principal axis so that the each moment
along the xgv.z, axes of the zero-order perturbed
moment M ydesired 1o produce & rigid-body rotation

about one axis are abtained as

My=1I,% 44
My=1n0-1,8° 45)
My=Iy8+158" (46)
where @& is the desired angular displacement. The
inertia moments in the above equations are the

elements of [, the mass moment of inertia, about

the rotational axis. These moments are applied 1o the
SCOLE to perform the slewing maneuver with respect
1o cne axis. [nstead of optimal formulation [11, (2] in
order to minimize either operational time or fuel or
both, which lead to solutions for two-peint boundary
problems, a simple operation is employed and targeted
reduction time and fuel

o the of aperational

consumption. A torque command input My = ux ()

for roll maneuver around x, axis in the paper used

in conjunction with the input shaping technique is

expressed as

T mpSin 2or
u (=10

where T ,,, s the torque magnilude and 12 is the

f‘éfo:%

w L= otherwise “7

period of torque input profile. The input profile is
used for sterl and stop motions. During the coasting
period, no additional input is required except [or
control input to treat disturbances. The smooth input
profile is selecled because the excitation of high
[requency modes should be reduced during (he
transient period.

In order to accurately arrive at the desired final
angle of the roll maneuver, an analytical solulion lor
intermediate time inlerval is needed.

integration of Eq. (44} with Eg. (47), the desited

By taking time

coasting angular velocity is given as
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5 Tmm) ﬁ_ Singfo 48
bo==7, 271 ) “s)
where 656 1s the costing angular velocity of 4. IT

lhe desired final angle &, is given, the coasting time

interval, 7, can be obtained as

fo=tot ot (49)

g,

4.3 Input Shaping

With the tracking model used to generate desired
states for OFC, the inpul shaping technique [13] is
employed to provide lhe residual vibration-free states
after the end of inpul In an open-loop manner,
Thercfore, the system lo be contralled is allowed to
vibrate for one half period of ihe lowest mode. It is
not necessary that the system should be held firmly to
suppress the vibration on flexible structure in the case
With the
sequences, the shaped input «, of desired input w(f

of rest-to-rest maneuver. two-impulse

could be written as

in which

(50

=1
A= 1+X,

where @, and § are vibration modal [requency and

damping, respectively of a second-order modal

equation. This function as a true maneuver input is
the

large angle

applied to the ftracking model and shuttle

operation of SCOLE

maneuver,

system lor a

4.4 Numerical Simulation

The f(ull-order model, 84 degrees of freedom, is
to 12
rigid-body medes by using the frequency dependent
[14] OFC. The
damping  formula s as
C,=aM .+ fK, where o= 3=1.005 were selecled,

bul we know that the damping faclor of space

reduced degrees of freedom including 6

Krylov  vectors lo design the

proportional used

110

2

structures is vety small so that the zero damping case

is discussed at the end of the section. The A7, and

K, are the 1educed mass and stiffness matrices of
the SCOLE mast The first and second natural
frequencies of the mast are (0.9563 He= and

1.0221 ffz, respectively.

For the application of Lthe OFC to the SCOLE
model, Eq. (15) is expressed with the assumption of
the measurable rigid-body states as

u(x):—(GB)"[G(A—Kfc)zu)+135cgze(r) 1)
+xGz O+ GK p{0--GD(H— Gz (]

where an attitude error feedback term xGz (8 Is

T~

Tip
Antenna

*
L 05
-

Mast

Spacecrafi Control Laboratory Experiment
Configuration

mtroduced which will be necessary for the shutile
control. The =z (# is only the rigid-body state error.

There are 3 torque and 3 force actualors applied
for the control of the shuttle. The 3 torque wheels are
mounted at the masti-tip to conirol vibration. [n this
study, il is assuimed that the measured variables are
8, 0, x, and x of the shuttle, The slale variables
of the mast with respect to ihe shulile are estimated
by the Kalman fiiter using 3 displacement ( x, v and
z) and 3 velocity ( x, y and z) sensors mounted at

the mast-tip. The conliguration of the acluators and

sensors is collocaled at both the shuitle and the
mast-1ip.

Several design paramelers are tabulated in Table 1
for the outpul [eedback controller. The oplimal
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weighting matrix is sclected as

g.=[ oL 0 | (52)
0 o, ’
where {=1,¢ and ¢ 15 the same as the order of

the estimator. Tor the state estimation, it i3 initially
assumed that the disturbances caused primarily by
tangential and centrifugal forces are known in the
controller and estimalor design, In the stage of
evaluating the performance ol the output teedback
conlroller, the disturbance terms are dropped in both
the controller and estimator, but the {ime-varying
effects on the system matrices such as siilfening and
gyroscopic terms remain

in only the estimator dynamics. In the case ol slower
angular motion, the stiflening and gyroscopic effects
are smaller.

Table 1 Design Parameters for Controller and
Estimalor
Rigid— Body Feedback Coefficient x 1060
Global Reaching Coafficient y 20
Secaling Factor o 1
Injinence Factor A, I
Rigid — Bodv Weighting Q, 1073
Measurement Noise Q. 107
Inpned Torque Perod Q 4 yadfsec

The influence term of the tracking model in Eq.
(43) adopted the tangeniial force which can provide
the effect of the angular acceleraiion of the shutile in
the specific application to the SCOLE model. Of
course, the influence term depends on a specific
problem such that a designer could select a different
one, During the numerical simulation, the first two
modes are most significantly cxcited by the shaped
inpul command in an open-loop manner. In order to
abtain no residual vibration, the 2nd maode frequency
of the tracking modcl is replaced with the 1st mode
frequency because only the 1st mode is used [or
shaping the input. Therefore, the lracking model does
generate  Tour non-zero states and mainlain  the
remaining slates at zero.

The desired input command is shaped by a
two-impulse sequence. Of course. more impulses can
be used for the increment of robustness as well as the
reduction of residual vibration. However, the control

suffers from longer opcrational time. Furthermaore,

11

there js a drawback of input shaping technique in
an-line implementation of multiple impulse sequence.
It is difficult to design the ampliludes of Znd impulse,
3rd impulse, and so on according to estimated natural
frequencies. For a instance, Tzes [15] used anly
two-impulse sequence for the application of a single
lick arm to pick a payload by estimating the Ffrst
natural frequency in frequency domain. In this paper.
the on-line operation of the inpul shaping technique is
not implemented. However, it is pursued to give a
faster operation, a more efficient maneuver, and a
mare reliable controller in a realistic problem,

All computations and plots shown 1n the paper
were performed on an IBM RISC 6000 Workstation.
The control schematic diagram which indicates the
the
sliding-mode controller, SCOLE simulation, and state

interaclions among commands, ideal model,

estimation is shown in Fig, 2.

i, it

:
thamonl Input Shaper  +——— Torqus Cammand snae

Equalion

Id=al Trasking | ©
Model

Output Meedback U
Tontral

Fig. 2 Closed-Loop Contral System

the numerical simulation. four are

compared from the aspect of the antenna defleciions

In cases

and rtotations. The four cases are

Case 1. Tracking Control (a) requires that most
nonideal effects are assumed to be known lor the
design of the OFC and time-varying Kalman filter
However, the OFC does not include the time-varying
cffects such as stiffening and gyroscopic terms. The
OT'C attempts to follow the ideal
tracking model. The control efficiency is demonstrated

stales aof the

by this case.
Case 2.

significant disturbances in the slewing maneuver to be

Tracking Contrel (b) allows the most

dropped in the design of the OFC and time-varying
Kalman [lter out of the Tracking Control (a} case.
The distwbances are the tangential and centrifugal
The OFC again tracks the states of the ideal
The OFC is

lorces

tracking model. robustness  of the
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illustrated by this casc.

Case 3. Open-Loop Control i that neither the
OFC nor Kalman filter is involved. The input shaping
technique is used to evaluale the performance with
only two-impulse sequence.

Case 4. Rigid-Body Control in that the idcal
tracking model is not used. The OFC is attempting to
hold the flexible mast like a rigid-body.

In the four cases,
magnitude T ,,,=20 b A(2.7651 Kz, m) in Fig.

3 is shaped by a two-impulse sequence and then is

the input command with the

applied to the shuttle for a 30 ° roll maneuver. The
oulpul feedback controller is charged with rejecting
perturbations during the entire slewing motion. The
desired motion of the shuitle is shown in Fig. 4 with
the maximum velocity around § deg/sec

The main control objective of the SCOLE maodel
is to aim the antenna within a certain tolerance
0.02
rotations versus time are presented. Figs. 5 to 7
with

in short time. Hence, plots of the anienna

illustrate ihe instantaneous antenna rtotalions

shaped torque cammn
- - mpmrqfigcomman:

i \‘.“\/"A\;"
2| L
Hy
- b
“
5 7 H k] 7 B [3 H L)
tamn (wac)
Fig. 3 Command Inputs for 30 ° Roll Maneuver
accelaration {de
o valocity (deg/sec) | e
--- displacement {deg). - B
fo
3
ﬂ\ R N
5| /‘ W ‘, .
] -
Ui - i X . .
\ /
! i
.5}» Vo
! \/ \/
"‘O 1 2 4 é [} T
e (ma)

Fig. 4 Mancuver Strategy of the Shuttle for 30 ° Roll

Maneuver

2

respect 1o xqv,z, axes, respectively.

The figures show the responses produced during
the mancuver with all four of the conirol techniques.
The effect of the tangential and centrifugal terms in
the comtroller and estimator in the case of tracking
centrol (b) shows more angular displacement and
takes a longer time than the one of lracking control
(a) to settlc down the oscillatory deflection because
the OTC i3 employing a globally asymplotic reaching
technique [2] unlike a rapid switching technique,
Wevertheless. it does eventually and quickly damp out
the residual oscillatory deflection of all axes in Lhe
presence of modeling errors in the tracking control
(a).

The equation of control effort C_E. for Fig. §
and 9 is delined as

OB = fo "l B Tul Bt (53)

The rigid-body control 15 nol very effeclive in
controlling the vibration compared o the fracking
control {a).

The fracking control (5) requires more control
effort after 6
continuously consumes energy in order to damp out
The

leasi amount of control

than two other cases. and sec.

the residual vibration. tracking control (a)

effort and

maneuver. The control effort

consumes the
accomplishes the 30
for the entire system operalion in the tracking controf
fa) is a small below
50 « 5704781 Kg - ») which can be indirectly

comparable to the results of Meiravitch and Quinn

quantity

(1987). They used either disiributed force actuators or
10 discrete force actuators in controlling the vibration

15+ -
—— lrashing cuntrol‘ a.
-- Iracluing cantrol i{b

- - ngid-bedy contrcl \
1 apen-loap coniral

rolation {deg)

+ B 7 L]
Lma (sec)

Fig. 5 Antenna Rotation about x, during a 30 °

Maneuver
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opan-loap conly

tracking conlral
Iracking coniral
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atg
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Fig. 6 Antenna Rotation about

Mancuver

@
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Fig. 7 Antenna Rotation about =z, during a 30

Maneuver

of mas! instead of using torque wheel actuators in this
papar. Bach . £, is {or the entire operalional cffort.

The Tracking coamirof (o) is tested for ihe zero
C=0"" with
paramiers in Table 1. Tl turns out that the residual

dampwing case ihe same design

vibration of the mast exists after the end of the 20
slewing maneuver. However, the maximum vibraiion

[.02 "
objeciive of the SCOLE opeiation. It appears that the

amplitude is below which is the control
overall performance of the OFC is similar 1o the

non-zero damping case.

5. Conclusions

The OFC is developed [or a lincar stochaslic
system with known disturbance. The error states are
determined wsing the Kalman filler to define ihe
nwnber of sliding hypersurfaces. The number of
controller poles results from the thickness of boundary

tracking con-l.rcﬂiar
tracking conlral {b;
P fgia-hody ceritrol

ik
a

4 5
time (pech

Fig. 8 Torque Control Efforts during a 30 ~Maneuver

—- tracking contrg [ag e
- - tracking contrg| (b -
pay - - ngid-body contral 1
o0
oa ' 4
anoe i
E [,
0008 -
[ I
.
|
o0} "- 4
a 1 ‘2 4 : 6 ¥ a
{Ime {ses)

Fig. 9 Force Control Efforts during a 30 ' Mansuver

layers and the remaining poles for the entire stales arc
determined by the sliding hvperswface selection. The
Orc minimizes the expected value of a guadratic
chjective [unction composing of error states which
of
hypersurfaces with respect 1o the remaining poles.

In the SCOLE
madel, the OFC is modified for the mansuver of the
with ihe
model and the input shaping. The {irsi-mode tiacking
v be than
rigid-body motion strategy. With the limited actuators

glways remain on the intersection sliding

numerical simulation with the

rigid-body and combined ideal tracking

sirategy i3 shown more cfficient the

and sensors al the masi-lip, the large angle maneuver

is  sueccessfully accomplished without significant

residual vibiation.
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