Characteristics of DGS Transmission Line and Influence of Lumped Elements on DGS

Defected Ground Structure를 갖는 전송선로의 특성과 집중소자에 의한 특성

  • Kim, Chul-Soo (Division of Information Technology Engineering, Soonchunhyang Univ.) ;
  • Sung, Jung-Hyun (Division of Information Technology Engineering, Soonchunhyang Univ.) ;
  • Kil, Joon-Bum (Division of Information Technology Engineering, Soonchunhyang Univ.) ;
  • Kim, Sang-Hyeok (Division of Information Technology Engineering, Soonchunhyang Univ.) ;
  • kim, Ho-Sub (Division of Information Technology Engineering, Soonchunhyang Univ.) ;
  • Park, Jun-Seok (Division of Information Technology Engineering, Soonchunhyang Univ.) ;
  • Ahn, Dal (Division of Information Technology Engineering, Soonchunhyang Univ.)
  • 김철수 (순천향대학교 정보기술공학부) ;
  • 성정현 (순천향대학교 정보기술공학부) ;
  • 길준법 (순천향대학교 정보기술공학부) ;
  • 김상혁 (순천향대학교 정보기술공학부) ;
  • 김호섭 (순천향대학교 정보기술공학부) ;
  • 빅준석 (순천향대학교 정보기술공학부) ;
  • 안달 (순천향대학교 정보기술공학부)
  • Published : 2000.09.01

Abstract

In this paper, we showed the characteristic of transmission line with DCS (Defected Ground Structure), which is etched on the metallic ground plane. And we extracted the equivalent element value of DGS section. Effects of a lumped element placed on DGS section were investigated by employing DGS of dumbbell shape and parallel resonator with DGS. Chip type resistor, inductor, and capacitor were chosen as lumped elements for experiments. Experimental results show that the Q-factor and resonant frequency of the proposed DGS section can be controlled directly by using the external lumped element.

본 논문은 접지면에 형성된 디펙트를 갖는 전송선로 구조인 DGS의 특성 및 등가회로를 구하고 디펙트의 크기에 따른 등가 집중소자 값을 추출하였으며, DGS에 집중소자를 달아주어 그 영향을 살펴보았다. 제시된 DGS는 아령 모양의 디펙트로 아였으며, 병렬 단락 공진기에 적용하였다. 침 형태의 집중소자인 저항, 인덕터, 커패시터를 각각 달아주어 주파수 특성을 살펴보았다. 또한 실험결과 Q factor와 공진 주파수가 DGS에 달아준 외부소자에 의해 제어됨을 보였다.

Keywords

References

  1. APMC'98 Dig. Characteristics of microstrip lines on a uniplanar compact PBG ground plane Y. Qian;F. R. Yang;T. Itoh
  2. IEEE Microwave and Guided Wave Lett. v.8 no.2 Novel 2-D photonic bandgap structure for microstrip lines V. Radisic;Y. Qian;R. Coccioli;T. Itoh
  3. 한국전자파학회 논문지 v.10 no.5 Slow-wave 특성을 이용한 3dB 전력 분배기 설계 김철수;박준석;안달;김근영
  4. Microwave Opt. Tech. Lett. v.11 no.4 Antenna design with the use of photonic bandgap material as all dielectric planar reflectors M. P. Kesler;J. G. Maloney;B. L. Shirley
  5. IEEE Microwave and Guided Wave Lett. v.8 no.1 Broad band power amplifier using dielectric photonic bandgap structure V. Radisic;Y. Qian;T. Itoh
  6. APMC'99 Dig. v.2 Modeling of photonic bandgap and its application for the low-pass filter design J. I. Park;C. S. Kim;J. Kim;J. S. Park;Y. Qian;D. Ahn;T. Itoh