꼬마배나무이(Cacopsylla pyricola(Foerster)) 발생소장 및 온도별 발육기간

Population Trends and temperature-Dependent Development of Pear Psylla, Cacopsylla pyricola(Foerster) (Homoptera: Psyllidae)

  • 김동순 (원예연구소 원예환경과) ;
  • 조명래 (원예연구소 원예환경과) ;
  • 전흥용 (원예연구소 원예환경과) ;
  • 임명순 (원예연구소 원예환경과) ;
  • 이준호 (서울대학교 농업생명과학대학 농생명공학부)
  • 발행 : 2000.08.01

초록

지금까지 우리 나라에서 배를 가해하는 나무이과(Psyllidae) 해충은 배나무이(Cacoosylla pyrisuga)와 꼬마배나무이(C. pyricola) 두 종으로 알려져 있었으나, 정확한 생태가 아직 밝혀지지 않았다. 본 연구는 꼬마배나무이의 생태를 구명하여 방제기초 자료를 마련하고자 월동생태 및 발생소장, 온도발육 실험 등을 수행하였다. 꼬마배나무이는 겨울형 성충태로 배나무 거친 껍질 밑에서 월동하였으며, 월동성충은 2월 중순경부터 활동을 시작하였다. 성충과 약충이 배나무 잎이나 과실을 흡즙하면서 그을음병을 유발시켜 피해가 발생하였다. 꼬마배나무이의 포장발생 정도는 이상저온이었던 1993년에는 연중 다발생되었고, 한발고온이었던 1994년에는 7월 이후 발생이 급격히 감소하였으며, 기온이 평년수준이었던 1995년에는 7~8월에 발생이 감소하는 경향이었으나 9, 10월 발생이 다시 증가하는 특성을 보였다. 꼬마배나무이 알의 온도별 발육기간은 15, 20, 25, 30, $35^{\circ}C$에거 각각 13.33, 9.32, 7.82, 6.60, 7.75일 이었으며, 1영에서 5영까지 온도별 발육기간은 15, 20, 25, $30^{\circ}C$에서 각각 33.75, 23.77, 15.21, 17.40일 이었다. 고온영역에서 꼬마배나무이의 발육기간은 증가하였고 사망률도 증가하였다. 또한 온도와 꼬마배나무이 발육율과의 관계를 비서형 발육모형과 선형발육모형을 통하여 검토하였다.

Two Psyllidae species of Cacopsylla pyricola (Foerster) and C. pyrisuga (Foerster)damaging pear trees have been reported in Korea. However, their ecological characteristics and damagepatterns have not been evaluated yet. To establish basic control measures of C. pyricola, field phenology,overwintering ecology, seasonal fluctuation and temperature-dependent development of C. pyricola wereexamined. C. pyricola overwintered under the bark scale of pear trees as winter form adults and theymoved to fruiting twigs from mid-February. Honeydew produced by C. pyricola nymphs and adults asthey feed caused serious black sooty mold on leaves and fruits. The seasonal occurrence of C. pyricolawas different every year. In 1993, characterized by cold temperature and heavy precipitation, C. pyricolapopulation was maintained highly during growing season. However, the population was decreased rapidlyfrom early July in 1994, year of hot and dry weather condition. In 1995, year of average temperature, thedensity of C. pyricola population was decreased during hot months of July and August, and rebuilt up inSeptember and October. The development periods of C. pyricola eggs were 13.33 days at 15"C, 9.32 daysat 20$^{\circ}$C, 7.82 days at 25"C, 6.60 days at 30$^{\circ}$C, and 7.75 days at 35$^{\circ}$C. The development periods ofnymphs were 33.75 days at 15OC, 23.77 days at 20$^{\circ}$C, 15.21 days at 25"C, and 17.40 days at 30$^{\circ}$C. Theirdevelopment periods and mortalities were increased in higher temperatures. The parameters of nonlineardevelopment model, Weibull and linear development models of Cacopsylla pyricola were estimated.models of Cacopsylla pyricola were estimated.

키워드

참고문헌

  1. Division of agriculture and natural resources Integrated pest management for apples and pears Alden A.;H. Seney
  2. Korean J. Appl. Entomol v.35 Effects of photo-period and temperature on formation and fecundity of two seasonal forms of Psylla pyricola(Homoptera:Psylidae) An J. H.;M. S. Yiem;D. S. Kim
  3. Good fruit grower Orchard pest management Beers E. H.;J. H. Brunner;M. J. Willett;G. M. Warner
  4. Wash. Agric. Stn. Circ. The pear psylla in central Washington Burts E. C.
  5. J. The-or.PoP. Biol. v.13 A stochstic model of a temperature-dependent population Curry G. L.; R. M. Feldman;K. C. Smith
  6. J. Econ. Entomol. v.85 Susceptibility of Cacopsylla pyri and C. pyricola to avermectin B1 applied topically and as residues on pear foliage Etienne J. C.;T. X. Nguyen;E. C.Burts
  7. J. Chem. Physics. v.3 The activated complex in chemical reactions Erying H.
  8. Can. Entomol. v.117 Regional resistance to insecticides in Psylla pyricola from pear orchards in Oregon Follett P. A.;B.A. Croft;P.H. Westigard
  9. J. Econ. Entomol. v.74 Method for rearing the pear psylla Fye R. E.
  10. Helicoverpa assulta Studing on forecasting models of the oriental tobacco budworm Han M. W.
  11. Environ. Entomol. v.12 Empirical model of nymphal development for migratory grasshopper,Meldnoplus sanguinipes(Orthoptera:Acrididae) Hilbert D. W.;J. A. Logan
  12. Jandel Scientific Automated curve fitting and equation discovery;version 4.0 Jandel.
  13. Korean J. Appl. Entomol. v.35 Modeling temperature-dependent development and hatch of overwintering eggs of Pseudococcus comstocki(Homoptera:Pseudococcidae) Jeon H. Y.;D. S. Kim;M. S. Yiem;J. H. Lee
  14. J. Cell. Comp. Physiol v.28 The growth rate of E. coil in relation to temperature,quinine and coenzyme Johnson F. H.;I. Lewin
  15. In Annual report of NHRI, RDA. v.31235-51850-56-2 Ecological studies on the pear psylla Kim D. S.;H. Y. Jeon;M. S. Yiem;M. R. Chlo;S. B. Kim
  16. Environ. Entimol v.18 Emergence model for field population of overwintering Helio-this zea and H. Virescens(Lepidoptera:Noctuidae) McCann I. R.;J. D. Lopez Jr.;J. A. Witz
  17. Can. Entomol. v.108 Factors affecting anduction and termination od diapause in Pear Psylla(Homoptera:Psyllidae) McMullen R. D.;C. Jong
  18. Physiol. Entomol. v.9 Observations on the effects of photoperiod on the control of polymorphism in Psylla Pyricola Mustafa T. M.;C. J. Hodgson
  19. SAS/STAT user's guide,release 6.11 ed. SAS Institute
  20. J. Theo. Biol. v.88 Nonlinear regression of biological temperature-dependent rate models based on absolute reaction-rate theory Schoofield R. M.;P. J. H. Sharpe;C. E. Mugnuson
  21. J. Theo. Biol. v.64 Reaction Kinetics of poikilotherm development Sharpe P. J. H.;D. W. DeMichele
  22. Check list of insects from Korea The Entomological Society of Korea & Korean Society of Applied Entomology
  23. Ann. Entomol. Soc. Am. v.77 Modeling insect development rates;a literature review and application of a biophysical model Wagner T. L.;H. Wu.;P. J. H. Sharpe;R. M. Schoolfield;R. N. Coulson