Properties of Diamond-like Carbon(DLC) Thin Films deposited by Negative Ion Beam Sputter (I)

Negative ion beam sputter 법으로 증착한 DLC 박막의 특성 (I)

  • Kim, Dae-Yeon (School of New Materials & System Engineering, Kumoh National University of Technology) ;
  • Gang, Gye-Won (School of New Materials & System Engineering, Kumoh National University of Technology) ;
  • Choe, Byeong-Ho (School of New Materials & System Engineering, Kumoh National University of Technology)
  • 김대연 (금오공과대학교 신소재시스템공학부) ;
  • 강계원 (금오공과대학교 신소재시스템공학부) ;
  • 최병호 (금오공과대학교 신소재시스템공학부)
  • Published : 2000.07.01

Abstract

Direct use of negative ions for modification of materials has opened new research such as charging-free ion implantation and new materials syntheses by pure kinetic bonding reactions. For these purposes, a new solid-state ce-sium ion source has been developed in the laboratory scale. In this paper, diamond like carbon(DLC) films were prepared on silicon wafer by a negative cesium ion gun. This system does not need any gas in the chamber; deposition occurs under high vacuum. The ion source has good control of the C- beam energy(from 80 to 150eV). The result of Raman spectrophotometer shows that the degree of diamond-like character in the films, $sp^3$ fraction, increased as ion beam energy increases. The nanoindentation hardness of the films also increases from 7 to 14 GPa as a function of beam energy. DLC films showed ultra-smooth surface(Ra~1$\AA$)and an impurity-free quality.

순수한 동적 결합반응이고 전하 누적이 없는 이온 임플란테이션, 새로운 재료 개발 등에 음이온을 직접 사용하는 새로운 연구가 진행되고 있으며, 이러한 관점에서 새로운 고체상의 Cs이온 법이 실험실 규모로 연구되고 있다. 본 논문에서는 음이온 Cs gun으로 DLC 박막을 실리콘 위에 제조하였다. 이 시스템은 가스가 필요없으므로, 고 진공에서 증착이 일어난다. C(sup)-빔 에너지는 80~150eV 사이에서 조절이 우수하였다. Raman 분석결과 박막의 DLC 지수, 즉$sp^3$비율은 이온 에너지 증가에 따라 증가하였으며, 미소 경도값 또한 7에서 14GPa로 증가하였다. DLC박막의 표면 평균거칠기(Ra)는 ~1$\AA$정도로 아주 매끈하였으며, 불순물이 내재되지 않는 박막을 얻을 수 있었다.

Keywords

References

  1. J. Appl. Phys. v.59 J. Wagner;P. Lautenschlager
  2. J. Appl. Phys. v.61 S. Prawer;R. Kalish;M. Adel;V. Richter
  3. J. Vac. Sci. Technol v.A16 no.6 M. H. Sohn;Y. O. Ahn;Y. W. Ko;S. R. Han;T. E. Fischer
  4. Appl. Phys. v.37 Structural, Optical, and Field Emission Properties of Hydrogenated Amorphous Carbon Films Grown by Helical Resonator Plasma Enhanced Chemical Vapor Deposition Jae Yeob Shim;Eung Joon CHi;Hong Koo Baik;Sung Man Lee
  5. Thin Solid Films v.315 The strengthening mechanism of DLC film on silicon by MPECVD S.L. Sung;X.L. Guo;K.P. Huang;F.R. Chen;H.C. Shin
  6. J. Electronic Materials v.27 no.1 S.F. Yoon;H. Yang;Rusli;J. Ahn;G. Zhang
  7. J. Non-Crystalline Solids v.254 M.K. Fung;W.C. Chan;K.H. Lai;I. Bello;C. S. Lee;N.B. Wong;S.T. Lee
  8. Surface and Coating Technol. v.85 H. J. Scheibe;D. Drescher;B. Schultrich;M. Falz;G. Leonhardt;R. Wilberg
  9. J. Electro. Mater. v.25 no.1 R. D. Vispute;J. Narayan;K. Jagannadham
  10. Appl. Phys. Lett. v.68 no.9 E. Grossman;G. D. Lempert
  11. J. Vac. Sci. Technol. v.A3 no.2 Yoshikatsu Namba;Toshio Mori
  12. Rev. Sci. Instrum. v.63 no.4 Junzo Ishikawa
  13. Rev. Sci. Instrum. v.67 no.3 Junzo Ishikawa
  14. Thin Solid Films v.317 L. Nobili;P. L. Cavallotti;G. Coccia Lecis;G. De Ponti;C. Lonardi
  15. Proc. of the twelfth conf. on mechanical behaviors of materials 한준희;허용학;윤경진;이광렬;심성민
  16. 한국재료학회지 v.7 no.1 김성영;이재성
  17. Surface and Coating Technology v.123 S. Zhang;X. T. Zeng;H. Xie;P. Hing
  18. J. Appl. Phys. v.84 no.10 Qing Zhang;S. F. Yoon;Rusli;J. Ahn;H. Yang
  19. Surface and Coatings Tech. v.96 P. Hollman;P. Hedenqvist;S. Hogmark;G. Stenberg;M. Boman