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THE STUDY OF PARAMETRIC AND
NONPARAMETRIC MIXTURE DENSITY
ESTIMATOR FOR FLOOD FREQUENCY ANALYSIS

Young-1I Moon

Department of Civil Engineering, University of Seoul, Seoul, Korea

Abstract: Magnitude-frequency relationships arc used in the design of dams, highway bridges, culverts, water supply
systems, and {lood control siructures. In this paper. possible lechniques for analyzing flocd frequency at a sile are
presented. A curtently vsed approach to flood [requency amalysis is based on the concepl of parametric statistical
inference In this analysis, the assumplion is made that the distrfbution {unclion describing (lood data 15 known.
However, such an assumption is nol always justified. Even though many people have shown thal (he nonpaiametric
method provides a better fit 1o the daia than the parametric method and gives more reliable flood estimates, tha
nonparametric methed implics a small probabilily w extiapolation beyond the highest observed data in ihe saniple.
Therelore, a remedy 1s presented in this paper by inttoducing an estimator which mixes parametric and nanparametric

density estimales.
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1. INTRODUCTION

{lood
frequency analysis is based on the concepl of

A currently wused approach to

parametric  statistical inference. In  these
analyses, the assumption is made that the
distribution function deseribing flood data is

known. Distributions that are often used are

Normal, Log-Normal, Pearson Type III,
Log-pearson Type III, Wakeby, Gumbel,
Gamma, and others. Some  difficulties

associated with parametric estimation are {i)
the objective selection of a distribution (ii)
the reliability of distribulional
(especially for skewed data

parameters
with a short
record length) (iti) the inability 1o analyze

multimodal distribwtions that may arise from
a mixture of causalive factors, and (iv) the

treatment of outliers. Therefore, classical
density  estimalion  techniques may be
inadequate for meodelling such an annual

maximum process or lhe extreme lail of the
distribution. However, nonparametric metheds
do mnol require assumptions about the
underlying populations from which the dala
are obtained. Therefore, they are betler snited
for multimodal distributions. In recent years.
several nonparametric approaches thal have
promise for estimating the probability density
function of anmual floods have been
introduced by Adamowskr (1985, 1989, and

1996), Adamowski and Feluch (1990},



Adamowski and Labatiuk (1987), Lall et al.
(1993), Moon et al. (1993), Moon and Lall
(1994 1995), and Moon (1996
1999).

Even though many people have shown that
the nonparametric method provides a better

and and

fit 1o the data than the parametric method
and gives more reliable flood estimates, the
nonparametric method implies a very small
probability in beyond the
highest observed data in the sample. Schuster
and Yakowitz (1985) offered a remedy for
these

extrapolation

inadequacies by  introducing an

estimator  which mixes parametric and
nonparametric  density  estimates.  They
proposed a plan 1o implement the

nonparametric estimate feature of sidesiepping
the model-choice dilemma while overcoming
the drawback of the lack of an extended tail
and also provided an  avenue  for
incorporating pricr information. In brief, the
plan calls for choosing a parametric family
and approximating  the  unknown

PDF(probability density function} h,(x) for

then

the x(i)'s by a mixiure
haf{x) = Al (%) + (1 — A{n))g,(x) n

where f.(x) 1is
of [x},
density estimator of g(x), and A(n) is a
number in the wunit interval [0,1]. Schuster
and Yakowitz (1983) showed that as the
number n of samples increases, the estimalor

h,(x) 1is strongly consistent. The mixture or

a nonparametric  density

estimator g (x) 18 a parametric

semiparametric  estimalor is  developed by

constructing  nonparametric
f.(x) Zn(x)
according to the
equation (2) which maximizes the log
likelihood finction (Schuster and Yakowitz,
1985).

and parametric

eslimators and and mixing

them rule given the
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In(A)= 2} [ AML (x()) + (1~ An)e, (x(1))]
2)

In  summary, if a correcl parametric
distribution is available, the mixture estimator
may have value A(n) near 1. On ihe other
hand, o the parametric distribution is not
correct, then A(n) is expected to be less than

| according to the equation (1).

2. NONPARAMETRIC KERNEL DENSITY

FUNCTION
Rosenblatt  (1936) introduced the kernel
eslimalor, defined for all real x by
Sl Sl xR 3
[(X)iu Zlh K( h ) &)
where L TP are  independent

identically distributed real observaiions, K{ - )
is a kemel function, and h is a positive
smoothing factor assumed Lo tend o zero as
n lends to infinity. Parzen (1962) generalized
and investigaled the consistency properties of
the  Rosenblatt
popularized it to such an extent that the

kernel eslimalor. He

estimalor is also called the Rosenblatt-Parzen
Silverman (1986) explained the
basic concept of the kernel estimator. From

estimator,

the defimilion of a probability density, il the
random variable x has density f{x), then

TR _
[(:x)flﬂgol oh P(x—h<{X<{x+h) (@

For any given h, P{x—h<X<{x+h) can be
estimated by the proportion of the sample
Talling in the interval (x-h, xth). Thus, a
natural estimator is given by choosing a
small number h and setting

f(x)=2%m[# of ¥y, . X, lalling in{x—h, x+h)]

(5)
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We shall
express

call this the naive estimator. To
the
define the weight function w(x) by

estimator more (ransparently,

w(x)=1/2 il ahs{x) {1 (6}
0 if otherwise

Then it is easy tc see that the eglimator can
be written as

_1 1 x—X,
f(X)_n zth VV( h ) 7
It follows From that the
estimator is construcied by placing a box of

widlh 2h and {2nh)"!  on
observation and then swmming to obtain the

equation (6)

height each
estimator, This weight function is the kermnel
function which satisfies the condition

where t= E;—‘m (%)

[ Rwa=1,
The kemel fmction is usually required to be
imimodal with peak at smoothness,

and a symmetric function, thal is, a density

([Kha=13  with

x=0,

expectation 0

( f tK(Wdt=0 and finite variatice

{ f 2 K (t)dt = constant? .

In addition, for the estimale 10 converge, as
infinity, nh should tend to
approach zero. When applying the method in
practice il is necessary to choose a kernel

n approaches

[unction and a smoothing parameter. Some
uselul kemel functions are given in Table 1
and Fig. . Usnally, different kemels should
be examined depending the objective. For
example, if continuity and differentiability of
the density is needed, one may choose a
kernel with mlinite supporl rather than one
with fnite supporl.

While the choice of kernel does not seem 1o

5l

Table 1. Typical Kernel Functions

Kernel K(9)
1
Rectangnlar 7 for [ul<1
0 if otherwise
Gaussian 1 exp(;t—z)
2 2

Epanechnikov —%(1—%—9)/\/15 for |E[<V5

1
auciny :
Cauchy e
U.ﬁ K il
0.5 — — - = Saussan
— ~— Epanechnikou
0.4 — Py ——n Cauchy
A
K(t) 0.3 | FAN
Y/ N\
0.2 'I,-l"/ \ A
0.1 — » "
P vt i
PRI o N =S
5 -5 o’ -3 .2 -1 0 1 ¥ El 4 a &
t

Fig. 1. The Shape of Kernel Functions.

be critical, the choice of smoothing factor is
quite a different matter. The value of h is
critical and, in practice, nol obvious. Too
large an h  implies large bias, an
oversmoothed estimate, and consequeni loss

of information. Too small an h implies large

variance and too rough an  estimate
(Adamowski and TLabatiuk, 1987). Since all
error measures depend on the unkoown

density, generally they cannot be used in
deriving analylical expressions for selecting
the smoothing factor h. Several measures of
performance for using the data 1o produce
suitable values for the smoothing parameter b
proposed.  The
parameter h can be oblained by maximum
likelihood least
cross-validation, Breiman et al. method, and

have  been smoothing

cross-validation, squares



jo]
N}

Adamowski cross-validations.

2.1 Maximum Likelihood Cross-validation

Habbema et al. (1974) and Duin (1976)

used the concepl of likelihood to justify
choosing h to maximize
Ir(x) )

where f_, (x,) is the density estimator based
op the data with observation x, omitted.
The method of likelihood cross-validation is
the natural development of the idea of using
likelihood to judge the adequacy of fit of a
statistical model. Il can be applied generally,
1974,
and Geisser, 1973). Suppose that, in addition
to  the
observation Y Irom { were available.

not just in densily estimation (Stone,

original data set, an independent
Then,
the likelihood of 1 as the density underlying
the observation Y would be log(f(Y)), with [
regarded as a paramefric family of densities
depending on the window width h bul with

fixed. This would
give log(f{Y)), regarded as a [unction of I,
likelihood of the
parameler  h.
ohservation, Y,

the data. Ky, Xgy v 00 By

as the log smoothing

Since an independent
is nol available, one of the
from the

original observations x, sample

used to construct the density estimale could
be omitted, and X,

observation Y. This
likelthood log .,

construcied from all the data points except

could be used as the
would  define  log

o be the dengily estimate

¥, , that is,

t 0=t JZ;I{( ) (10)
Since there is mnothing special about 1ihe

choice of which observation o leave out, ihe
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log likelihood is averaged over each choice

of omitled X, to give the score function

cvi="1 3 tog 1 (x) an

The likelihood cross-validation choice of h
is then the value of h which maximizes the
funclion CV(h) for the given data. Tt is
this
procedure is consistent il [(x) is 0 outside a

known that, wnder lenient circumstances,

finite  interval. However, [or lomg-tailed
and Gregory (1981)
likelihood
method is not even consistent, and Marron
(1985} that the kemel

and the density are compactly supported,

Schuster
that the

distributions,
have shown maximum

demonsirated when
even though the resulling density estimator
will be consistent, the consistency can be
very slow and the selected bandwidth very

poor.

2.2 Least Squares Cross-validation
Least
completely aulomatic method for choosing

squares  cross-validation is a
the smoothing paramcter. ¥t has only been
formulated in recenl years, but it is based on
an extremely simple idea, The method was
suggesied by Rudemo (1982) and Bowman
(1984,

Given any estimator [ of a density f, the

integrated squared error can be writlen

Ja=n'= -2t [¢

Now the last term of above equation does

(12)

i, and so the ideal
choice of window widih will correspend to

not depend on estimator

the choice which minimizes the quantity R
defined by

R = [ 1°-2 [ (13)
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The
cross-validation is to construct an estimale of

basic principle of least square
R( 1) from the data themselves and then to

minimize this estimale over h to give Lhe

choice of window widih. The term J T can

be found from the estimate §. Define

Therelore, define
M= | P31 (X) (15)
The score M, depends only on the data.

The idea of least squares cross-validalion is
to minimize the score M, over h. The fact
that the smoothing factor h chosen in this
procedure is asymptotically correct for IMSE
has been shown under various assumptions
by Hall (1983), Hall and Marron (1987), and
Stome  (1984). The strength of this
smooth ing factor is that it is asymplotically

main

correct  under very weak  smoothness
assumplions on  the underlying density.
However, a drawback to leasl square

thai the
a tendency

cross-validation  is score  function
M, (h)

several

has towards  having

local minimum values with some
spurious ones often quite far over on the
side of undersmoothing. For this reason, it is
recommended that minimization be done by a
grid search through a range of h's instead of
sorl  of

step-wise

by some computationally more

ellicient minimization algorithm
which will converge quile rapidly but only to
a local munimum. An unexplored possibility
for approaching the local minimum problem
the bandwidth

value of h [or

is 1o select which is the

largest which a local

minimum occurs.

2.3 Breiman et al. Method

Breiman el al. (1977) proposed a variable
kernel estimator given by

‘7}{) (16}

a1 1
o=t Bk ke

where  d,

Lot . .
%, lo its k" nearest neighbor, and h, is a

is the distance {from the point

congtant smoothing factor. Thus, the constam
smoothing factor h in the fixed kernel
estimate is replaced by a variable smoothing
hyd, k
depending on the value of the local density

parameter which is  adjusted

of data. Breiman ei al. (1977) proposed a
numerical minimization procedure such thal

the variance of i‘[htd,‘, is 4 minimum. In
=

an extensive numerical experiment, Breiman
et al. (1977) made the empirical discovery
that

a

(dl\:) o
h, s (dy constant (17}
for an optimal value of k where d, is the

mean of the k" nearest neighbar distances,
and s(d,) is their standard devialion. Based
on a goodness-of-fit test, they developed a
cnterion to select oplimal k and h. For the
case when F is a p-variale density and (he

sample points  {x} _, are random
p-vectors, they usc the argumeni that the
randam variable given by

w,=expl(—f{x,) nV) (18)

where Vv, i the volume ol the
p-dimensional sphere with radius equal to (he
distance from x; 1o ils nearest neighbor, is

uniformly diswibuted. To
values of k and h,

selecl  optimizing
n case of univariate,
mimmize the following



{19

s=3w &)

where W, = exp(—i{x)nd, ) and j=1,2,....n

that  the
extremely
and that the
variable kernel had better results when k was

Breiman et al. (1977) showed
results

sensilive to the choice of k

variable  kernel WETe

large enough.

2.4 Adamowski Cross-validation

The value of h can be estimated, but the
numerical approximation of the smoothing
factor h can be determined by minimizing
the following MSE expression (Adamowskd,
1983).

2R - Bl e
where the unknown probability ¥ (x) is
estimated by the probability plotiing formula
F(x,) (the empirical distribution function).
The existing practice in selection of a
particular formula is rather arbitrary, and
Weibull's formula (i / {(n+1}), which provides
biased
recommended. Based on the MSE criterion,

and conservalive resulls, is often

Adamowski (1981) developed a new plotting
formula

] — =4
F(x)=% where j=1,2,..... n (2
Adamowski showed that when the {lood
frequency  analysis is  performed using
Gumbel Type [ distribulion then ihe new

plotling  formula can provide a good

approximation to true exceedance probability
al high values and that [or Pearson Type III

distribution no single plotling formula is

striclly  correcl. However, if one Fformula
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which can be used with all distributions was

required as a compromise, then the new
plotting formula was suitable.
The

Cramer-von Mises criteria given by

Adamowski crileria is related to the

D(F,F,)=n [(F—F,)"dF (x) (22)

where F is the irue distribulion finction,
and F, is the estimated distribution
function. Good and Gaskins (1980) proposed
a method of choice of smoothing factor
based on a goodness-of-fit statistic which
measures the distance between the empirical
distribution function ¥, and F,, constructed

by integrating the kernel density estimaie,

that is,
D{F,. F,)=0.1188 23)
The constant, 0.1188, is the asympiotic
median of INF, F,). Adamowski's MSE

expression is similar (o Good and Gaskins'
goadness-oi-[it slatistic as (ollows:

D(F.F,) =n f(F—FI,)EdF(X)

=0 2}(F,~F,)}(F,~F )

{24)
=02 B~ B F,- F, )
21112( F— P‘I)ZW1
where
1, 3-0.5
wi= g ()
i 1 {i+1-0,35 | i—=0.25
W, = 2( n+0.5 T n+0.5)
_L( i—0.75 i—l—O.ZE): ]
2y n+0.5 n+0.5 (n+0.5)"
as i=2,. ..., 0l
_,_1/2n—1.5
w=1-p(70E) &)
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3. EXPERIMENTS WITH MIXTURE
DENSITY FUNCTION

tend to
probability on the
larger than
x(1)'s.
100-year flood level needs to be estimated
based on 20 or 50 data. The
nonparametric not  use

Nonparameiric  methods place

negligible interval of
poinis

observed

the maximum of the

For example, often the
annual
estimators  do
hydrological experience or relaied dala such
as records at similar gauging stations.
Schusier and Yakowilz (1983) proposed a
remedy for these difficulties by iniroducing a
density which
and  mnonparametric

mixture estimator mixes

parametric density
estimators. They used a maximum likelihood
cross-validation 1o choose the bandwidth h,
By this

could solve the model choice problem and

procedure, the mixture eslimator

overcome the drawback of lack of tail; in
addition, an avemue could be provided for

incorporating prior information. An
approximate paramelric  estimalor, such as
normal, gamma, and Gumbel, may be
chosen. In this experiment, the parametric

family was chosen to be the normal density

function. To construct the nonparametric
PDF, the normal, Epanechnikov, or cauchy
kernel functions The

nonparametric kernel estimators require the

were used.

smoothing factor h, which is oblained by
likelihood
cross-validation,

maximuun cross-validation, least

squares Breiman et al.
approach, and Adamowski

methods.

cross-validation

The
were:

sleps of the experimental procedure

1) Generale samples of size 20, and 100
from N(0,1), Pearson Type III (0,1,1), and

mixture = {0.5 N(0,1) , 0.5 N(3,13}.

2y Consider the normal density estimator.
3) Consider the
nonparametric

combination of the
kernel estimalors and
parametric estimators.

4) Consider the normal, Epanechnikov, and
cauchy kemel functions,

5) Consider the maximum likelihood method
to select weighting factor A(n).

6) Consider tail probability estimates
(cumulative density function {(CDF) values) at
P = 09, 0.95 098 099, and 0.995 (ie.,
return  period 10, 20, 50, 100, and 200
years). Specify the true x values for each
parent corresponding to these probabilities,
use each method to compute the predicted
probability in each case, and compute the
errors  belween obtained by

different methods and the population values

estimators

using the bias and RMSE in prediction for
each event, thal is,

bias =E[F{x)—F{x)] {26)

MSE =E[ F(x)— F(x)]° = hiag® + variance  (27)

RMSE = (MSE)* (28)

or

bias and RMSE

1—P 1-p (29)

7) Repeat steps 1 - 5 1000 times.

4. RESULTS AND CONCLUSIONS

The average of the bias and RMSE for
each selection procedure was then computed.
The average of the bias and RMSE for the

normal, FEpanechnikov, and cauchy kemel
functions with maximum likelihood cross-
validation, least squares cross-validation,



and Adamowski

cross-validation methods. The results give a

Breiman et al.  approach,
good indication which kernel function and
bandwidth selection is a good combination
data, data,
mixture data of sample size 20 and 100.
The that the Epanechnikov
kernel combined with maximum

for the normal gamma and

results show

function
likelthood method uswally produced the best
result. Therefore, the variable kernel estimator
combined the Epanechnikov kemel Rmction,
with maximum likelihood methed, was used
as a nonparametric family.

4.1 Case 1-Estimation when the Parametric
Family is Correct

In the first case, 20 and 100 observations
ol the normal variable were simulated with
mean=0 and variance=1, and the parametric,
and the mixture
shown in Figs. 2 through 5 were applied. In

nonparametric, estimators
this case, the parametric estimator can be
assumed to be correct because observations
are from parametric f{amily. The mixture

estimator provided better results than the

nonparametric estimator.

4.2 Case 2-Estimation outside the Range
of Data when the Parametric Family is
Incorrect

In the second case, 20 observalions were
generated according to ihe gamma (0,1,1)
and mixture {0.5N(0,1H0.5N(3,1)} [amilies,
respectively. The results are shown in Figs. 6
through 9. though the parametric
estimalor is incorrect, the results are better

Even

than those of the nonparametric estimator for
return period 100 and 200 years since the
nonparametric estimators do nol have tail on
the interval of than  the

points  larger
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Fig. 3. RMSE/AL-P} of Mixtare Distribution
for Normal Data N(0,1), n = 20

maximum of the observed x(iY's. That is,

only Z20-year maximum flood dala s
available, but the 100-year and 200-year
maximum flood probability needs to be

estimated. In this case, the mixture estimator
also had better resulls than the nonparamelric
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Fig. 5. RMSE/1-P) of Mixture Distribution
for Normal Data N(0,1), n =100
estimator,

4.3 Case 3-Estimation within the Range
of Data when the Parametric Family
is Inmcorrect

In the third case, 100 observations were
generated according to the gamma (0,1,1)
and mixture {0.5N(0,1)+0.5N(3,1)}  families,

1

|

5
%
@
o
20 T T T T T T
5(578&D 2 3 4 EBTB?HU 2
Relurn Perod{year)
Fig. 6. Bias/(1-P) ol Mixture Distribution
for Gamma Data {0,1,1), n = 20
30
—@—  hongzarsin:
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T
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0'5 T TTT | T T T LR T

5('}75!91U 2 3 456?Bﬁl[m 2

Reium Periodiyear)

Fig. 7. RMSEf(1-P) of Mixtare Distribution
for Gamma Data (0,1,1), n = 20

respectively. As shown in Figs. 10 through
13, the eslimator
provided beiter rtesults than the parametric
The
estimators had the same behavior.

nonparametric usually

estimator. nonparametric and mixture
The resulis for mixing weight A{n} values

in each case are shown in Table 2,
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Fig. 9. RMSE/(1-F} of Misture Distribution
for Gamma Data (0,1,1}, n =100

If the right parameiric estimator can be
then
estimating annual maximum (lood. However,
the true form of the distribution function is
the
context and must be assumed in practical

chosen, there is no problem in

never exactly known in hydrological

situations, When the parametric estimator was
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Fig, 11. RMSE/(1-P) of Mixlure Distribution
for Mixture Data {0.5N(0,1) +
.5NE,0L 1 = 20
not correct, only a limited data set was
available, and il was necessary io estimate
outside the range of data, the nonparametric
good  upper-tail

eslimator could produce

results singe the nonparameiric estimator does
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Table 2. Mixing Weight A(n) for Each Case

59

Case Observations Size Mixing Weight A(n)
: Normal 20 0.37
Normal 100 045
5 Gamma 20 0.47
Mixture 20 .96
. Gamma LO0 092
’ Mixture 108 0.98
10 10
o ——- —
b
= =
g — 5
o —— Nonnneinr \ o
& i [ r— \\
—h— e \ i -
.~
g (p— - \
g »
At ST T — T T T ; | T T T T [ T
56788 2 3 4 5678%0 2 56789,[, 2 35 4 56785, 2

Relurn Period(yaar)

Fig., 12. Bias/(1-P)} of Mixture Distribution
for Mixture Dalaf0.5N(0,1) +
5N, D}, n = 100

not have tail on intervals greater (han the
largest of ihe observed data x(i)'s. In this
case, the mixture estimalor enhances the tail
parts by mixing a parametric estimator with
a nonparametric estimator. hmproved methods
for kernel function and bandwidth selection
will help to analyze {lood frequency. By this
procedure, incorporation of prior information,
experience, and regional data information is

allowed.
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