Abstract
Equal channel angular pressing (ECAP) is a convenient forming process to extrude material without substantial changes in the sample geometry and this deformation process gives rise to produce ultrafine grained materials. The properties of the materials are strongly dependent on the plastic deformation behaviour during ECAP. The major process variables during ECAP are 1) die geometries, such as a channel angle and coner angles, and 2) the processes variables, such as lubrication and deformation speed. In this study, the plastic deformation behaviour of materials during the ECAP has been theoretically analysed by the finite element method (FEM). The effect of the die friction on the plastic deformation behaviour during the pressing is discussed by means of FEM calculations.