Beam Pattern Optimization of Hexagonal Array Transducer Using Finite Element Method

유한 요소기법에 의한 육각형 배열 변환기의 지향성 최적화

  • 장순석 (정회원, 조선대학교 공과대학 전기제어계측공학부) ;
  • 이제형 (조선대학교 대학원 제어계측공학과) ;
  • 안흥구 (조선대학교 대학원 제어계측공학과)
  • Published : 2000.02.01

Abstract

This paper describes the optimization of the hexagonal array transducer using finite element method. The transducer consists of the disc type sensors. Three dimensional beam patterns of each element and the array transducer are analysed using the finite element code ATILA. Beam patterns were analyzed for the disc type transducer. To optimize beam patterns of the array transducer, Chebyshev polynomial weight is applied to each element. In case of applying optimized weight, a 30 degree width beam pattern is presented at 10kHz. This paper also includes the effect of rubber filling material instead of using the water inside the transducer array.

Keywords

References

  1. Array Signal Processing Haykin, Simon S.
  2. Ph. D. Thesis University of Birmingham Sonar Transducer Analysis and Optimization using the Finite Element Method Jarng, S. S.
  3. Proceeding if Ire v.34 A Current Distribution for Brodeside Arrays which Optimizes the Relationships Between Beam Width and Sidelobe Level Dolph, C. L.
  4. Ire Trans, Antenna Propag. Design of Line Source Antennas for Narrow Beam Width and Low Side Taylor, T. T.
  5. Ieee Trans. On Signal Processing v.40 no.11 A Simple Algorithm to Achieve Desired Patterns for Arbitrary Ching-Yih Tseng;Lloyd J. Griffith
  6. 한국음향학회 추계학술대회 논문집 2차원 배열 소나 빔 설계기법 연구 송준일;전병두;임준석;성굉모
  7. Atila Finite-Element Code for Piezoelectric and Magnetostrictive Transducer Modeling Vesion 5.03 User's Manual
  8. Int. J. Numer. Method. Eng. v.2 Finite Element Method for Piezoelectric Vibration Allik, H.;Hughes, T. J. R.
  9. J. Acoust. Soc. Am. v.86 no.4 Finite Element Modeling of Radiationg Structures usign Dipolar Daming Elements Bossut, R.;Decarpigny, J. N.
  10. J. Acoust. Soc. Am. v.86 no.4 Analysis fo a Radiatin Thin-Shell Sonar Transducer Using the Finite Element Method Hamonic, B.;Debus, J. C.;Decapigny, J. N.
  11. J. Acoust. Soc. Am. v.44 Improved Integral Formulation for Acoustic Radiation Problems Schenck, H. A.
  12. Proc. R. Soc. London, Ser. v.A323 The Application fo Integral Integration Methods to the Numerical Solutions of Some Exterior Boundary Problems Burton, A. J.;Miller, G. F.