기계적인 합금화에 의한 Mg-18wt.%Ni 수소저장합금의 개발

Development of Mg-18wt.%Ni-Hydrogen-Storage Alloy by Mechanical Alloying

  • 송명엽 (전북대학교 신소재공학부) ;
  • 안동수 (전북대학교 신소재공학부) ;
  • 권익현 (전북대학교 신소재공학부) ;
  • 안효준 (경산대학교 금속재료공학과)
  • Song, Myoung-Youp (ept.of Materials Science Engineering, Chonbuk National University) ;
  • Ahn, Dong-Su (ept.of Materials Science Engineering, Chonbuk National University) ;
  • Kwon, Ik-Hyun (ept.of Materials Science Engineering, Chonbuk National University) ;
  • Ahn, Hyo-Jun (Kyung San University)
  • 발행 : 2000.01.01

초록

기계적으로 합금처리한 Mg-18wt.%Ni 혼합물의 수소저장특성이 조사되었다. 1h, 3h, 그리고 6h 동안 기계적으로 합금처리한 혼합물들 중에서 6h동안 기계적으로 합금처리한 혼합물(MA 6h sample)이 가장 좋은 활성화, 수소화물 형성.분해 특성을 보인다. 수소화물 형성.분해 cycling을 시킴에 따라 $Mg_2$Ni상이 형성된다. MA 6h sample은 비교적 쉽게 활성화되며, 순수한 Mg나 Mg-10wt.%Ni 합금보다 수소화물 형성속도가 높으나, $Mg_2$Ni 합금보다는 수소화물 형성속도가 약간 낮다. MA 6h sample은 $Mg_2$Ni 합금에 비해 낮은 수소화물 분해속도를 보이지만, 순수한 Mg나 Mg-25wt.%Ni 합금보다는 높은 수소화물 분해속도를 보인다. MA 6h sample은 순수한 Mg나 다른 합금들보다 큰 수소저장용량을 가지고 있다.

The hydrogen-storage properties of a mechanically-alloyed Mg-18wt.%Ni mixture were investigated. Among the mixtures mechanically alloyed for 1h, 3h, and 6h, the mixture mechanically alloyed for 6h(MA 6h sample) shows the best properties of activation, hydriding, and dehydriding. The $Mg_2Ni$ phase forms in the mechanically-alloyed Mg-18wt.%Ni mixture along with hydriding-dehydriding cycling. The MA 6h sample is relatively easily activated and has higher hydriding rate than the pure Mg, the Mg-10wt.%Ni alloy, and a little lower hydriding rate than the $Mg_2Ni$alloy. The MA 6h sample lower dehydriding rate than the $Mg_2$Ni alloy but higher dehydriding rate than the pure Mg and the Mg-25wt.%Ni alloy. The MA 6h sample has larger hydrogen-storage capacity than the pure Mg and the other alloys.

키워드

참고문헌

  1. U. S. Patent 2 944 Metal Hydrides Vose
  2. Inorg. Chem. v.6 no.12 J.J. Reilly;R.H. Wiswall
  3. Inorg. Chem. v.7 no.11 J. J. Reilly;R. H. Wiswall Jr
  4. Metall. Trans. A v.6 D.L. Douglass
  5. Proceedings International Symposium Hydrides for Energy Storage D.L. Douglass;A.F. Anderson(ed.);A.J. Maeland(ed.)
  6. J. Inorg. Nucl. Chem. v.40 M.H. Mintz;Z. Gavra;Z. Hadari
  7. Mater. res. Bull. v.14 French Anvar Patent 78 203 82 M. Pezat;A. Hbika;B. Darriet;P. Hagenmuller
  8. J. Less-Common Met. v.74 M. Pezat;B. Darriet;P. Hagenmuller
  9. Proceedings 5th World Hydrogen Energy conference, Toronto, Canada v.3 Hydrogen Energy Progress V Q. Wang;J. Wu;M. Au;L. Zhang;T. N. Veziroglu(ed.);J.B. Taylor(ed.)
  10. Mater. Res. Bull v.11 B. Tanguy;J. L. Soubeyroux;M. Pezat;J. Portier;P. Hagenmuller
  11. J. Less-Common Met. v.74 F.G. Eisenberg;D.A. Zagnoli;J.J. Sheridan Ⅲ
  12. Int. J. Hydrogen Energy v.9 no.11 B. Bogdanovic
  13. Int. J. Hydrogen Energy v.7 no.10 E. Akiba;K. Nomura;S. Ono;S. Suda
  14. J. Less-Comman Met. v.89 E. Akiba;K. Nomura;S. Ono
  15. J. Less-Comman Met. v.89 J.M. Boulet;N. Gerard
  16. Proceedings 5th World Hydrogen Energy Conference, Toronto, Canada v.3 Hydrogen Energy Progress Ⅴ S. Ono;Y. Ishido;E. Akiba;K. Jindo;Y. Sawada;I. Kitagawa;T. Kakutani;T. N. Veziroglu(ed.);J. B. Taylor(ed.)
  17. thesis of 3eme cycle, Universite de Dijon J. M. Boulet
  18. J. Mater. Sci v.21 M.Y. Song;M. Pezat;B. Darriet;J.Y. Lee;P. Hagenmuller
  19. Proceedings 5th world Hydrogen Energy Conference, Toronto, Canada v.3 Hydrogen Energy Progress Ⅴ A.S. Pedersen;J. Kjφller;B. Larsen;B. Vigeholm;T.N. Veziroglu(ed.);J.B. Taylor(ed.)
  20. Int. J. Hydrogen Energy v.8 no.10 B. Vigeholm;J. Kjφller;B. Larsen;A. Schrφder Pedersen
  21. J. Less-common Met. v.118 M.Y. Song;B. Darriet;M. Pezat;J.Y. Lee;P. Hagenmuller