QSAR Modeling of Toxicant Concentrations(EC50) on the Use of Bioluminescence Intensity of CMC Immobilized Photobacterium Phosphoreum

CMC 고정화 Photobacterium phosphoreum 의 생체발광량을 이용한 독성농도(EC50)의 QSAR 모델

  • Published : 2000.06.01

Abstract

Concern for the effects of toxic chemicals on the environment leads the search for better bioassay test organisms and test procedures. Photobacterium phosphoreum was used successfully as a test organism and the luminometer detection technique was an effective and simple method for determining the concentration of toxic chemicals. With EC50 a total of 14 chlorine substituted phenols benzenes and ethanes were used for the experiments. The test results showed that the toxicity to P. phosphoreum increased in the order of phenol > benzene > ethane and the toxicity also increased with the number of chlorine substitution. Quantitative structure activity relationship (QSARO) model can be used to predict EC50 to save time and endeavor. Correlation was well established with the QSAR parameters such as log P, log S and solvatochromic parameter(Vi/100 $\pi$, ${\beta}$m and am). The QSAR modeling was used with multi-regression analysis and mono-regression analysis. These analyses resulted in the following QSAR : $log EC_{50} =2.48 + 0.914 log S(n=9 R2=85.5% RE=0.378) log EC_{50}=0.35 - 4.48 Vi/100 + 2.84 \pi^* +9.46{\beta}m-4.48am (n =14 R2=98.2% RE=0.012) log EC_{50} =2.64 -1.66 log P(n=5, R2=98.8% RE=0.16) log EC_{50}=3.44 -1.09 log P(n=9 R2= 80.8% Re=0.207)$

발광미생물 (luminescent bacteria)인 P. phosphoreum을 이용한 수계의 환경독성물질로 지정된 ethane, benzene, phenol류에 chlorine이 치환된 l47~의 독성강도를 생체발광의 50%저하시키 는 독성농도인 ECso값을 통한 생물학적 정량을 하였을 때 phenol) benzene) ethane 의 순서로 독성깅도가 높게 산출되 어졌으며, 특히 지환된 chlo괴ne의 수가 증가할수록 독성강도가 강하다는 것을 알 수 있었다. 또한 산출된 ECso값을 이용허여 독성물질들의 물려화학적 parameter특성인 octan이(water 분할계 수 (log P), 용해도 (log S) 및 solvatochromic parameter의 떤관쟁 을 QSAR 모탤링하였으며 실힘을 통하지 않고, 독성의 독성강도 를 예측할 수 있는 회기식을 다음과 같이 산출하였다. $log EC_{50} =2.48 + 0.914 log S(n=9 R2=85.5% RE=0.378) log EC_{50}=0.35 - 4.48 Vi/100 + 2.84 \pi^* +9.46{\beta}m-4.48am (n =14 R2=98.2% RE=0.012) log EC_{50} =2.64 -1.66 log P(n=5, R2=98.8% RE=0.16) log EC_{50}=3.44 -1.09 log P(n=9 R2= 80.8% Re=0.207)$. QSAR 모델은 QSAR 검증식을 통하여 확인된 다중회기식을 이용함으로 실험하지 않은 독성물 질이 갖는 물리화학적인 특성을 대입하여 log Eeso값을 예측할 수 있으므로 경제적, 시간적으로 이익을 얻을 수 있는 모델이다.

Keywords

References

  1. Environ. Sci. Technol v.24 no.3 Dtermining Chemical Toxicity to Aquatic Species Blum, D. J;R. E. Speece
  2. M.S. Thesis, Dept. of Environmental Engineering Toxicity Test of Organic Chemicals Using Nitrobacter Choi, J. T
  3. Korean J. Biotechnol. Bioeng v.15 no.1 Studies on the Use of Carboxymethylcellulose Sodium Salt Matrix for the Immobilization of Photobacteriumm phosphoreum Lee, Y. J., S. J. Jung, M. S. Her;U. H. Chun
  4. Bioprocess Engineering : basic concept(1st ed) Shuler, M. L;F. Kargi
  5. israelensis, pestic. sci v.45 Stability and Controlled Release Properties of Carboxymethylcellulose-Encapsulated Bacillus thuringiensis var Cumhur, C;E. Murat
  6. Environ. Sci. Technol v.22 no.6 Quantitative Techniques for Predicting the Behavior of Chemicals in the Ecosystem Nirmalakhandan, N;R. E. Speece
  7. Environmental Contamination and Toxicology v.29 no.1 Quantitative Structure-Toxicity Relationships and Volume Fraction Analyses for Selected Esters Jaworska, J. S., R. S. Hunter;T. W. Schultz
  8. The Science of the Total Environment v.216 QSAR Study of the Toxicity of Benzoic Acids to Vibrion fischeri Zhao, Y. H., G. D. Ji, M. T. D. Cronin;J. C. Dearden
  9. Journal of Environmental Engineering v.120 no.6 Estimating Toxicity of Organic Chemicals to Activate-Sludge Microorganisms Sun, B., N. Nirmalakhandan, E. Hall, X. H. Wang, J. Prakash;R. Maynes
  10. Chem. Res. Toxicol v.11 Quantitative Structure Activity Analyses of Nitrobenzene Toxicity to Tetrahymena pyriformis Cronin, M. T. D., B. W. Gregory;T. W. Schultz
  11. Environ. Sci. Technol v.20 An Analysis of Toxicant Properties That Influence Inhibition of Bioluminescence in Photobacterium phosphoreum(The Microtox Test) Kamlet, M. J., R. M. Doherty, G. D. Velth, R. W. Taft;M. H. Abraham
  12. Chemospnere v.15 no.4 Expeerimental Determination and Prediction of Partition Coeffecients of Thioueas and Their Toxicity to Photobacterium phosphoreum Govers, H., C. Ruepert, T. Stevens;C. J. V. Leeuwen
  13. Journal of Enviormental Engineering v.118 QSAR Parameters for Toxicity of Organic Chemicals to Nitrobacter Tang, N. H., D. J. W. Blum;R. E. Speece
  14. Toxicity Screening Procedures Using Bacterial Systems Determination of the Toxicity of Selected Metalworking Fluid Preservatives by Use of the Microtox System and an In Vitro Enzyme Assay Mallak, F. P;R. L. Brunker
  15. Kor. J. Appl. Microbiol. Biotechnol v.27 no.2 Optimization of the Condition of Immobilized Photobacterium phosphoreum with Strontium Alginate Lee, H. J., H. S. Kim, K. H. Chung, E. S. Lee;U. H. Chun
  16. J. Phus. Chem. Ref. Data v.10 no.4 A Critical Review of Henry's Law Constants for Chemicals of Environmental Interest Mackay, D;W. Y. Shiu
  17. Environmental Contamination and Toxicology v.57 Quantitative Structure-Activity Relationships of Organic Acids and Bases Zhao, Y. H., L. H. Yang;L. S. Wang
  18. Handbook of environmental fate and exposure data for organic chemicals. Solvents. Lewis. Boca Raton. Fla v.1,2,4 Howard, P.H