Impact of Physiological Stresses on Nitric Oxide Formation by Green Alga, Scenedesmus obliquus

  • Mallick, Nirupama (Forschungszentrum julich GmbH, Institut fur Chemie und Dynamik der Geosphare (ICG-6)) ;
  • Mohn, Friedrich-Helmuth (Forschungszentrum julich GmbH, Institut fur Chemie und Dynamik der Geosphare (ICG-6)) ;
  • Rai, Lalchand (Department of Botany, Banaras Hindu University) ;
  • Soeder, Carl-J. (Forschungszentrum julich GmbH, Institut fur Chemie und Dynamik der Geosphare (ICG-6))
  • Published : 2000.06.01

Abstract

The rate of apparent nitric oxide (NO) release, as measured in the exhaust gas of green alga, Scenedesmus obliquus, depended on the light intensity and pH. It doubled after lowering the temperature from $25^{\circ}C{\;}to{\;}15^{\circ}C$ and strongly decreased from $35^{\circ}C{\;}to{\;}42^{\circ}C$. The Scenedesmus cells, deficient in nitrogen or phosphorus, demonstrated a significant increase in NO production following their transfer to nitrate- and phosphate-rich media. The addition of herbicides (DCMU and glyphosate) or toxic concentrations of $Cu^{2+}{\;}or{\;}Fe^{3+}$ produced strong NO peaks, resembling those that occurred after sudden darkening. An increase in the $Ni^{2+}$ concentration to 20 ppm resulted in a gradual increase of NO release from the initial ~1.5 ppbv to>20 ppbv, whereas $Cd^{2+}$ instantaneously suppressed the NO by the cultures of Scenedesmus was not altered by L-NNA, an inhibitor of nitric oxide synthase (NOS), or by its substrate, L-arginine. This seems to exclude the role of NOS in the NO formation under study. Accordingly, it can be assumed that the rate of NO formation is mainly a function of dynamic nitrite pool sizes and environmental factors significantly affect the NO production in algae.

Keywords

References

  1. Pesticide Biochem.Physiol. v.12 Effect of Ametryn[2-(ethylamino)-4(isopropylthio)-6 (methylthio)-s-triazine] on nitrate reductase activity and nitrite content of wheat (Triticum sativum L.) Churchill,K.;L.Klepper.
  2. FEBS Lett. v.398 Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus. Cueto,M.;O.Hernandez-Perera;R.Martin;M.L.Bentura;J.Rodrigo;S.Lamanas;M.P.Govano.
  3. Plant Physiol. v.88 The conversion of nitrite to nitrogen oxide(s) by the constitutive NAD(P)H-nitrite enzyme from soybean. Dean,J.V.;J.E.Harper.
  4. Nature v.394 Nitric oxide functions as a signal in plant disease resistance. Delledonne,M.;Y.Xia;R.A.Dixon;C.Lamb.
  5. Proc. Natl. Acad.Sci.USA v.95 Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP-ribose. Durner,J.;D.Wendehenne;D.F.Klessig.
  6. Biotechnol.Bioeng. v.30 Deterministic interpretation of the temperature response of microbial growth. Fiolitakis,E.;J.U.Grobbelaar;E.Hegewald;C.J.Soeder.
  7. Progress in Nitrogen Cycling Studies. Nitric oxide(NO) release in activated sludge plants with nitrification and denitrification. Groeneweg,J.;I.Leuther;T.Muckenheim;an Cleemput,O.;G.Hofman;A.Vermoesen.(eds.)
  8. Annu. Rev. Plant Physiol. v.32 The assimilatory nitrate reducing system and its regulation. Guerrero,M.G.;J.M.Vega;M.Losada.
  9. Ambio. v.24 Effects of increased solar ultraviolet radiation on aquatic ecosystems. Hader,D.P.;R.C.Worrest;H.D.Kumar;R.C.Smith.
  10. Proc. Natl. Acad.Sci.USA v.95 Nitric oxide in plant Immunity. Hausladen,A.;J.S.Stamler.
  11. Metal-Microbe Interactions. Metal mimicry and metal limitation in studies of metal-microbe intergretions. Hughes,M.N.;R.K.Poole;G.M.Gadd.(eds.)
  12. Annu. Rev.Palnt Physiol.Plant Mol. Biol. v.45 Intergration fo carbon and nitrogen metabolism in plant and algal cells. Huppe,H.C.;D.H.Turpin.
  13. New Phytol. v.66 The role of carbon dioxide,light and temaperature on the synthesis and degradation of nitrate reductase. Kannangate,C.;H.Woolhouse.
  14. Atmos.Environ. v.13 Nitric oxide(NO) and nitrogen dioxide(NO₂) emissions from herbicide-treated soybean plants. Klepper,L.
  15. Planr Biochemistry and Molecular Biology Nitrogen metabolism. Lea,P.J.;R.C.Leegood.(eds)
  16. Plant Physiol. v.106 Induction and turnover of nitrate reductase in Zea mays. Li,X.Z.;A.Oaks.
  17. Biomed.Envir. Sci. v.5 Netal-induced inhibition of photosynthesis, photosynthetic electron transport chain and ATPcontent of Anabaena doliolum and Chlorella vulgaris. Mallick.N.;L.C.Rai.
  18. Chemosphere v.39 Studies on nitric oxide(NO) formation by the green alga Scenedeslmus obliquus and the diazotrophic cyanobacterium Anabaena doliolum. Mallick,N.;L.C.Rai;F.H.Mohn;C.J.Sorder.
  19. Pharmacol. Rev. v.43 Nitric oxide: Physiology, pathophhsiology and pharmacology. Moncada,S.;R.J.M.Palmer;E.A.Higgs.
  20. FASEB. v.6 Nitric oxide as secretory product of mammalian cells. Nathan,C.
  21. Atmos. Environ. v.27 Uptake of NO,NO₂,and O₃by sunflower plants(Helianthus annuus L.) and tobacco plants(Nicotiana tabacum L.) Dependence on stomatal conductivity. Neubert,A.;D.Kley;J.Wildt;H.J.Segschneider;H.Forstel.
  22. Photochem. Photobiol. v.64 Indications for the occurrence of nitric oxide synthases in fungi and plants and involvement in photoconidiation of Neutospora crassa. Ninnemann,H.J.Mater.
  23. Algal. Stud. v.93 Formation of nitric oxide(NO) in nitrate-supplied suspensions of green algae(Scenedesmus). Rai,L.C.;F.H.Mohn;P.Rockel;J.Wildt;C.J.Soeder.
  24. Environ. Expt. Bot. v.36 Regulation of heavy metal toxicity in acid-tolerant Chlorella: Physiological and biochemical approached. Rai,L.C.;P.K.Rai;N.Mallick.
  25. Acta Hydobiol. v.40 Effect of ultraviolet. monochromatic adn PAR waveband on nitrate reductase activity and pigmentation in a rice field cyanobacterium, Anabaena sp. Sinha,R.;M.Krywult;D.P.Hader.
  26. Annu. Re. Plant. Physiol. v.41 Assimilatory nitrate reductase: Functional properties and regulation. Solomonson,L.P.;M.J.Barber.
  27. Cell. v.78 Redox signalling-nitrosylation and related target in teractions of nitric oxide: Reviewed. Stamler,J.S.
  28. Planta v.77 Untersuchungen zur lichtabhangigen nitritreduktion von Chlorella. Strotmann,H.
  29. J. Phycol. v.28 Influence of phosphours nutrition on copper toxicity to three strains of Scenedesmus acutus(Chlorophyceae). Twiss,R.M.;C.Nalewajko.
  30. Nova Acta Leopoilina v.70 Biochemistry, genetics and molecular biology o ghighter plant nitrite nutrition. Wray,J.L.;M.P.Ward.
  31. J. Geophys.Res. v.102 Emission of NO from several higher plant species. Wildt,J.;D.Kley;A.Rockel;P.Rockel;H.J.Segschneider.
  32. Glob. Biogeochem. Cyl. v.6 NOX and N₂O emissions from soil. Williams,E.J.;G.L.Hutchinson;F.C.Fehnfeld.
  33. Trends Plant Sci. v.4 An alternative pathway for nitric oxide production in plants: New features of an old enzyme. Tamasaki,H.;Y.Sakihama;S.Takahashi.
  34. Biochem.Biophys.Acta v.1411 Nonenzymatic nitric oxide synthesis in biological systems. Zweier,J.L.;A.Samovilov;P.Kuppusamy.