Microbial Degradation of Monohydroxybenzoic Acids

  • Kim, Chi-Kyung (Department of Microbiology and Research Institute of Genetic Engineering, Chungbuk National University, Cheongju 361-763) ;
  • Tim (Department of Biochemistry, Gulbarga University, Gulbarga-585 106, India)
  • Published : 2000.03.01

Abstract

Hydroxybenzoic acids are the most important intermediates in the degradative pathways of various aromatic compounds. Microorganisms catabolize aromatic compounds by converting them to hydroxylated intermediates and then cleave the benzene nucleus with ring dioxygenases. Hydroxylation of the benzene nucleus of an aromatic compound is an essential step for the initiation and subsequent disintegration of the benzene ring. The incorporation of two hydroxyl groups is essential for the labilization of the benzene nucleus. Monohydroxybenzoic acids such as 2-hydroxybenzoic acid, 3-hydroxybenzoic acid, and 4-hydrosybenzoic acid, opr pyrocattechuic acid that are susceptible for subsequent oxygenative cleavage of the benzene ring. These terminal aromatic intermediates are further degraded to cellular components through ortho-and/or meta-cleavage pathways and finally lead to the formation of constituents of the TCA cycle. Many groups of microorganisms have been isolated as degraders of hydroxybenzoic acids with diverse drgradative routes and specific enzymes involved in their metabolic pahtway. Various microorganisms carry out unusual non-oxidative decarboxylation of aromatic acids and convert them to respective phenols which have been documented. Futher, Pseudomonas and Bacillus spp. are the most ubiquitous microorganisms, being the principal components of microflora of most soil and water enviroments.

Keywords

References

  1. J.Biol.Chem. v.261 Binding of 17O-Labeled substrate and inhibitors to protocatechuate 4,5-dioxygenase-Nitrosyl complex Arciero,D.M.;J.D.Lipscomb
  2. J.Expt.Biol. v.22 Utilization of aromatic substances by Pseudomonas solanacearum Arunakumari,A.;A.Mahadevan
  3. Microbial degradation of organic compounds The degradation of aromatic compounds by the meta and gentisate pathways Bayly,R.C.;M.G.Barbour;Gibson,D.T.(ed.)
  4. J. Biol. Chem. v.256 Purification and properties of protocatechuate 3,4-dioxygenase from Pseudomonas putida; A new iron to subunit stoichiometry Bull, C.;D.P. Ballou
  5. FEMS Microbiol. Lett. v.8 Hydroxylation of salicylic acid to gentisate by a bacterial enzyme Buswell, J.A.;A. Paterson;M.S. Salkinoja-Salonen
  6. Microbios. v.2 Bacterial attack on phenolic ethers: inducible oxidative metabolism of phenylmethyl ethers by bacteria Cartwright,N.;A.R.W.Smith;J.A.Buswell
  7. Eur.J.Biochem. v.229 Substrate specificity differs between two catechol 2,3-dioxygenases encoded by the TOL plasmids from Pseudomonas putida Cerdan,P.;M.Rekik;S.Harayama
  8. Degradation of synthetic organic molecules in the biosphere An outline of reaction sequences used for the bacterial degradation of phenolic compounds Chapman,P.J.
  9. J.Bacteriol. v.169 Metabolism of aromatic compounds by Caulobacter crescents Chatterjee,D.K.;A.W.Bourquin
  10. J. Gen. Microbiol. v.112 Catabolism of gentisic acid by two strains of Bacillus stearothermophilus Clark, J.S.;J.A. Buswell
  11. J.Bacteriol. v.121 Novel pathway for degradation of protocatechuic acid in Bacillus species Crawford,R.L.
  12. Appl.Microbiol. v.30 Degradation of 3-hydroxybenzoic acid by bacteria of the genus Bacillus Crawford,R.L.
  13. J.Bacteriol. v.127 Pathways of 4-hydroxybenzoate degradation among species of Bacillus Crawford,R.L.
  14. Appl.Environ.Microbiol. v.37 Catabolism of protocatechuate by a Bacillus macerans Crawford,R.L.;J.W.Bromely;P.E.Perkin-Olson
  15. J. Bacteriol. v.121 Purification and properties of gentisate 1,2-dioxygenase from Moraxella osloensis Crawford, R.L.;S.W. Hutton;P.J. Chapman
  16. Adv.Microbiol.Physiol. v.6 Catabolism of aromatic compounds by microorganisms Dagley,S.
  17. Microbial degradation of xenobiotics and recalcitrant compounds New perspectives in aromatic catabolism Dagley,S.;Leisinger,T.(ed.);Cook,A.M.(ed.);Hunter,R.(ed.);Nuesch(ed.)
  18. The Bacteria Biochemistry of aromatic hydrocarbons degradation in Pseudomonads Dagley,S.;Sokatch,J.R.(ed.)
  19. Biochem.J. v.109 The metabolism of protocatechuate by Pseudomonas testeroni Dagley,S.;P.S.Geary;J.M.Wood
  20. Biochem.J. v.95 The bacterial degradation of catechol Dagley,S.;D.T.Gibson
  21. J.Biochem. v.66 Oxidation of p-cersol and related compounds by a Pseudomonas Dagley,S.;M.D.Patel
  22. J.Bacteriol. v.113 Degradation of protocatechuate in Pseudomonas testosteroni by a pathway involving oxidation of the product of meta-fission Dennis,D.A.;P.J.Chapman;S.Dagley
  23. J.bacteriol. v.169 Protocatechuate is not metabolized via catechol in Enterobacter aerogens Doten,R.C.;L.N.Omston
  24. J. Bacteriol. v.160 Dissimilation of aromatic compounds in Rhodotorulla graminis: Biochemical characterization of pleotropically negative mutants Durham, D.R.;C.G. McNamee;D.B. Stewart
  25. Arch Microbiol. v.132 Utilization of aromatic compounds by Micrococcus sp.strain 12B Eaton,R.W.;D.W.Ribbons
  26. Arch. Microbiol. v.126 Degradation of coniferyl alcohol and other lignin related aromatic compounds by Nocardia sp. DSM 1069 Eggling, I.;H. Sahm
  27. FEMS Microbiol.Lett. v.5 Degradation of aromatic carboxylic acids by Nocardia sp. DSM 43251 Engelhardt,G.;H.G.Rast;P.R.Wallnofer
  28. J.Biol.Chem. v.266 Catalytic function of tyrosine residues in para-hydroxybenzoate hydroxylase as determined by the study of site-directed mutants Entsch,B.;B.A.Palfey;D.P.Ballou;V.Massey
  29. Appl.Environ.Microbiol. v.65 Purification and characterization of gentisate 1,2-dioxygenases from Pseudomonas alcaligenes NCBI 9867 and Pseudomonas putida NCIB 9869 Feng,Y.;H.E.Khoo;C.L.Poh
  30. Science v.266 The mobile flavin of 4-hydroxybenzoate hydroxylase Gatti,D.L.;B.A.Palfey;M.S.Lah;B.Entsch;V.Massey;D.P.Ballou;M.L.Ludwig
  31. Microbial degradation of organic compounds Microbial degradation of aromatic hydrocarbons Gibson, D.T.;V. Subramanian;Gibson, D. T.(ed.)
  32. FEMS Microbiol.Lett. v.97 Gentisate pathway in Salmonella typhimurium: metabolsim of m-hydroxybenzoate and gentisate Goetz,F.E.;L.J.Harmuth
  33. Biochem.Biophys.Res.Commun v.55 3-Hydroxybenzoate 6-hydroxylase from Pseudomonas aeruginosa Groseclose,E.E.;D.W.Ribbons;H.Hughes
  34. Appl. Environ. Microbiol. v.58 Naphthalene degradation via salicylate and gentisate by Rhodococcus sp. strain B4 Grund, E.;B. Denecke;R. Eichenlaub
  35. Appl. Environ. Microbiol. v.56 Catabolism of benzoate and monohydroxylated benzoates by Amycolatopsis and Streptomyces spp Grund, E.;C. Knorr;R. Eichenlaub
  36. Degradation of environmental pollutants by microorganisms and their metalloenzymes Aerobic biodegradation of aromatic hydrocarbons by bacteria Harayama, S.;K.N. Timmis;Sigel, H.(eds.);Sigel, A.(eds.)
  37. FEMS Microbiol.Lett. v.21 Degradation of substituted benzoic acids by a Micrococcus species Haribabu,B.;A.V.Kamath;C.S.Vaidyanathan
  38. J.Biol.Chem. v.265 Gentisate 1,2-dioxygenase from Pseudomonas Harpel,M.R.;J.D.Lipscomb
  39. J. Bacteriol. v.91 Synthesis of enzymes of the mandelate pathway by Pseudomonas putida 1. Synthesis of enzymes wild type Hegeman, G. D.
  40. J.Biochem. v.74 Kinetic studies on the reaction mechanism of dioxygenases Hori,K.;T.Hashimoto;M.Nozaki
  41. J.Biol.Chem. v.241 Crystallization and properties of p-hydroxybenzoate hydroxylase from Pseudomonas putida Hosakawa,K.;R.Y.Stanier
  42. Biochem. v.15 Protocatechuate 3,4-dioxygenase from Acinetobacter calcoaceticus Hou,C.T.;M.O.Lillard;R.D.Schwartz
  43. Arch.Microbiol. v.154 Catabolism of 3-hydroxybenzoate by the gentisate pathway in Klebsiella pneumoniae M5a1 Jones,D.C.N.;R.A.Cooper
  44. Biochem. Biophys. Res. Commun. v.165 Enzyme catalyzed non-oxidative decarboxylation of aromatic acids 11. Identification of active residues of 2,3-dihydroxybenzoic acid decarboxylase from Aspergillus niger Kamath, A.V.;A.N. Rao;C.S. Vaidynathan
  45. J.Microbiol. v.37 Catabolism of 4-hydroxybenzoic acid by Pseudomonas sp. DJ-12 Karegoudar,T.B.;J.C.Chae;C.K.Kim
  46. Inorg.Chem. v.26 Mossbauer and EPR spectroscopy of catechol 1,2-dioxygenase Kent,T.A.;E.Munck;J.W.Pyrz;H.Widom;L.Que Jr
  47. FEMS Microbiol.Lett. v.18 Degradation of catechol, methylcatechol and chlorocatechols by Pseudomonas sp, HV3 Kilpi,S.;V.Backstrom;M.Korhola
  48. Bioche.Biophys.Res.Commn. v.183 Characterization of catechol 2,3-dioxygenase Kim,Y.;B.S.Choi;J.R.Lee;H.I.Chang;K.R.Min
  49. J.Microbiol. v.15 Isolation of Pseudomonas sp. S47 and its degradation of 4-chlorobenzoic acid Kim,K.P.;D.I.Seo;K.H.Min;J.O.Ka;Y.K.Park;C.K.Kim
  50. J.Biol.Chem. v.242 Studies on pyrocatechase. 1. Purification and spectral properties Kojima,Y.;H.Fujiswa;A.Nakazawa;T.Kakazawa;E.Kanestuna;H.Taniuci;M.Nozaki;O.Hayaishi
  51. FEMS Microbiol.Lett. v.120 Comparision of enzymatic and immun-chemical properties of 2,3-dihydroxy biphenyl 1,2-dioxygenase cloned from four Pseudomonas strains Lee,J.;J.T.Sung;K.R.Min;C.K.Kim;Y.Kim
  52. Indian J.Expt.Biol. v.33 Characterization of crystals of protocatechuate 3,4-dioxygenase form Pseudomonas cepacia Ludwig,M.L.;L.D.Weber;D.P.Ballou
  53. Indian.J.Expt.Biol. v.33 Degradation of naphthalene by a Pseudomonas strain NGK1 Manohar,S;T.B.Karegoudar
  54. Indian J.Microbiol. v.35 Catabolism of monohydroxybenzoic acids by a Bacillus sp Manohar,S.;S.B.Mashetty;T.B.Karegoudar
  55. Indian J.Envirn.Hlth. v.37 Degradation of 4-hydroxybenzoic acid by a Bacillus species Mashetty,S.B.;S.Manohar;T.B.Karegoudar
  56. Indian J.Biochem.Biophys. v.33 Degradation of 3-hydroxybenzoic acid by a Bacillus species Mashetty,S.B.;S.Manohar;T.B.Karegoudar
  57. J.Biol.Chem. v.210 The enzyme fromation of β-carboxymuconic acid McDonald,D.L.;R.Y.Stanier;J.L.Ingrahm
  58. Biochem. Biophys. Res. Commun. v.55 3-Hydroxybenzoate-4-hydroxylase Pseudomonas testosteroni Michalover, J.L.;D.W. Ribbons;H. Hughes
  59. Biochem.Biophys.Res.Commn. v.238 Characterization of the gene encoding catechol 2,3-dioxygenase from Achromobacter xylosoxidans KF701 Moon,J.;E.Kang;K.R.Min;C.K.Kim;K.H.Min;K.S.Lee;Y.Kim
  60. J.Biol.Chem. v.258 Purification, subunit structure, and partial amino acid sequence of metapyrocatechase Nakai,C.;K.Hori;H.Kagamiyama;T.Nakazawa;M.Nozaki
  61. J. Bacteriol. v.172 Molecular cloning of the protocatechuate 4,5-dioxygenase genes of Pseudomonas paucimobilis Noda, Y.;S. Nishikawa;K. Shiozuka;H. Kadokura;H. Nakajima;K. Yoda;Y. Katayama;N. Morohoshi;T. Haraguchi;M. Yamasaki
  62. J.Biol.Chem. v.243 Metapyrocatechase. Ⅱ. The role of iron and sulfhydryl groups Nozaki,M.;K.Ono;T.Nadazawa;S.Kotani;O.Hayaishi
  63. Biochim.Biophys.Acta. v.220 Metapyrocatechase.Ⅲ. Substrate specificity and mode of ring fission Nozaki,M.;S.Kotani;K.Ono;S.Senoh
  64. Nature. v.336 Structure and assembly of protocatechuate 3,4-dioxygenase Ohlendorf,D.H.;J.D.Lipscomb;P.C.Weber
  65. Biochim.Biophys.Acta. v.220 Purificaiton and some properties of of protocatechuate 4,5-dioxygenase Ono,K.;M.Nozaki;O.Hayaishi
  66. J.Biol.Chem. v.241 The conversion of catechol and protocatechuate to βketoadipate by Pseudomonas putida Ornston,L.N.;R.Y.Stanier
  67. Anton van Leeuwenhoek v.35 The non-oxidative decarboxylation of p-hydroxybenzoic acid, gentisic acid and gallic acid by Klebsiella aerogens (Aerobacter aerogens) Patel,J.C.;D.J.M.Grant
  68. Indian.J.Biochem.Biophys. v.20 Purification of protocatechuate 3,4-dioxygenase from Pseudomonas fluorescens PHK by affinity chromatography Pujar,B.G.;D.W.Ribbons
  69. J.Biochem. v.83 Oxidative metabolism of protocatechuic acid by certain soil Psuedomonads: a new ring fission mechanism Ribbons,D.W.;D.W.Evans
  70. Arch.Bioche.Biophys. v.138 2,3-dihydroxybenzoate 3,4-oxygenase from Pseudomonas fluroscens. Oxidation of a substrate analog Ribbons,D.W.;P.J.Senior
  71. Eur.J.Biochem. v.28 The meta-cleavage of catechols by Pseudomonas putida NCIB 10015: metabolic divergence in the physiological significance and evalutionary implications Sala-Trepat,J.M.;K.Marray;P.A.Williams
  72. Eur.J.Biochem. v.239 4-Hydroxybenzoate hydroxylase from Pseudomonas sp. CBS3 Seibold,B.;M.Matthes;M.H.M.Eppink;F.Lingens;W.J.H.van Berkel;R.Muller
  73. J.Gen.Microbiol. v.83 The regulation of naphthalene oxygenase in Pseudomonas Shamsuzzamann,K.M.;E.A.Barnsley
  74. J.Microbiol.Biotechnol. v.8 A pathway for 4-chlorobenzoate degradation by Pseudomonas sp. S-47 Seo,D.I.;J.C.Chae;K.P.Kim;Y.Kim;K.S.Lee;C.K.Kim
  75. J.Biol.Chem. v.268 Cloning, nucleotide sequence, and expression of a p-hydroxybenzoate hydroxylase isozyme gene from Pseudomonas fluroscens Shuman,B.;T.A.Dix.
  76. J. Biol. Chem. v.268 Cloning, nucleotide sequence, and expression of a p-hydroxybenzoate hydroxylase isozyme gene from Pseudomonas fluroscens Shuman, B.;T.A. Dix
  77. Biodegrd. v.1 The biodegradation of aromatic hydrocarbons by bacteria Smith, M.R.
  78. J.Biol.Chem. v.210 Protocatechuic acid oxidase Stanier,R.Y.;J.L.Ingrahm
  79. FEMS Microbiol.Lett. v.28 A new pathway for bacterial catabolism of 3-hydroxybenzoic acid Starovoytov,I.I.;S.A.Selifonov;M.U.Nefedova;V.M.Adanin
  80. Appl.Environ.Microbiol. v.55 Occurrence of two different forms of protocatechuate 3,4-dioxygenases in Moraxella sp Sterjiades,R.;J.Pelmont
  81. Biosci.Biotech.Biochem. v.57 Purification and properties of three types of monohydroxybenzoate oxygenases from Rhodococcus erythropolis S-1 Suemori,A.;R.Kurane;N.Tomizuka
  82. Biosci.Biotech.Biochem. v.57 Purification and properties of gentisate 1,2-dioxygenase from Rhodococcus erythropolis S-1 Suemori,A.;R.Kurane;N.Tomizuka
  83. Biosci. Biotech. Biochem. v.57 Purification and properties of gentisate 1,2-dioxygenase from Rhodococcus erythropolis S-1 Suemori, A.;R. Kurane;N. Tomizuka
  84. J.Bacteriol. v.41 Catabolism of substituted benzoic acids by Streptomyces species Sutherland,J.B.;D.L.Crawford;A.L.Pometto
  85. J. Bacteriol. v.41 Catabolism of substituted benzoic acids by Streptomyces species Sutherland, J.B.;D.L. Crawford;A.L. Pometto
  86. Biochem.Biophys.Acta. v.579 Identification of a lysine residue in the NADH-binding site of salicylate hydroxylase Suzuki,K.;T.Mizuguchi;K.Ohnishi;E.Itagaki
  87. FEBS Lett. v.112 Mossbaur spectra of metapyrocatechase Tatzuno,Y.;Y.Saeki;S.Nozaki;S.Otsuka;Y.Maeda
  88. Arch.Biochem.Biophys. v.209 Uncoupling of the substrate monooxygenation and reduced pyridine nucleotide oxidation activities of salicylate hydroxylase by flavins Tu,S.C.;F.A.Romero;L.H.Wang
  89. Chemistry and biochemistry of flavoenzymes Flavin-dependent mono-oxygenases with special reference to p-hydroxybenzoate hydroxylase Van Berkel,W.H.;F.Muller;Muller,F.(ed.)
  90. J.Mol.Biol. v.236 Crystallization and preliminary X-ray analysis of protocatechuate 3,4-dioxygenase from Acinetobacter calcoaceticus Vetting,M.W.;C.A.Earhart;D.H.Ohlendorf
  91. J.bacteriol. v.175 Purification and characterization of protocatechuate 2,3-dioxygenase from Bacillus macerans: a new extradiol catecholic dioxygenae Wolgel,S.A.;J.E.Dege;P.E.Perkins-Olson;C.H.Juarez-gracia;R.L.Crawford;E.Munk;J.D.Lipscomb
  92. J.Biol.Chem. v.240 Salicylate hydroxylase, a monooxygenase requiring flavin adenine dinucleotide Yamamoto,S.;M.Katagiri;H.Maeno;O.Hayaishi
  93. J. Biol. Chem. v.240 Salicylate hydroxylase, a monooxygenase requiring flavin adenine dinucleotide Yamamoto, S.;M. Katagiri;H. Maeno;O. Hayaishi
  94. Biochem. v.11 Kinetics and Mossbauer studies on the mechanism of protocatechuic acid 4,5-dioxygenase Zabinski,R.;E.Munck;P.M.Champion;J.M.Wood
  95. Biochem. v.11 Kinetics and Mossbauer studies on the mechanism of protocatechuic acid 4,5-dioxygenase Zabinski, R.;E. Munck;P.M. Champion;J.M. Wood