Abstract
This study was conducted to develop the mathmatical model for predicting the side thrust which is generated by the shearing action on the vertical surfaces of the sides of the track. Experiments were conducted with the three different shear plates with grouser length of 1, 3 and 5 cm for two different soil condition using soil bin system. The measured side thrust were compared with the values predicted by the new model developed in this study and by Bekker's model respectively. The values of side thrust predicted by the new model were more close to the measured values than those of the side thrust predicted by Bekker's model . The total thrust measured were also compared with the values predicted by the conventional model which considers only bottom thrust effect and by the new model which contains not only bottom thurst but side thrust effect. The values of the thrust predicted by conventional modelwere lower than measured values for both of the soil conditions and the three levels of grouser length. The maximum errors of conventional model were increased with the increase of grouser length. but the values of the total thrust predicted by the model developed in this study were well matched to the measured ones for both of the soil conditions and the three levels of grouser lengths.