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HMM-Based Transient [dentification in Dynamic Process

Kee-Chaoon Kwon

Abstract - In this paper, a transient identification based on a Hidden Markoy Model (HMM) has been suggested and evaluated
experimentally [or the classification of transients in ihe dynamic process. The transient can be identified by its unigue time dependent
patterns related to the principal variables. The HMM, a double stochastic process, can be applied to transient identification which is a
spatial and temporal classification problem under a statistical paltern recognition framework. The HMM is created for each transient
from a set of training data by the maximum-likelthood estimation method. The {fransient identification is determined by calculating
which mode] has the hughest probability for the given test data. Several experimental 1ests have been performed with normalization
methods, clustering algorithms, and a number of states in HMM. Several experimenta! Lests have been performed including superim-
pasing random noeise, adding systematic crror, and untrained transients. The praposed real-time transient identification system has
many advaniages, however, there are still a lot of problems that shauld be solved to apply Lo a real dynamic process. Furlher efforts
are being made to improve the system performance and robusiness to demonsirate reliability and accuracy to the required lovel.

Keywords : transient identification, hidden Markov model, statistical pattern recognition.

1. Introduction

Transient identification in the dynamic process means clas-
sifying the type of fransients by inlerpreting the major plant
variables and operating status of the equipment. The transient
is defined as when a process proceeds to an abnormal statz
from a normal state. The term identification, as applied 10 an
engineering syslem or process, means the classification of the
cause which brought an undesirable state or failure of the sys-
tem. The identification can be dane at several different levels,
e.g. componcent, subsystem, function or event [1]. For the pro-
posed transient identification sysiem, identification is made at
the event level to determine which transient has occurred in
the dynamic process. It is necessary Lo identify the type of
transient theough continuous maonitoring of the dynamic proc-
ess such as the Nuclear Power Plants (NPPg) during its early
stage to provide sufficient information to the human eperators
in order to assisl for proper operator aclion selection lo pre-
venl a more severe situation or to mitigate the accident conse-
quence [2].

Typical transients in WPPs are associated with unique, time-
dependent patterns of major variables and equipment status.
This time dependent pattern may be used to identify the tran-
sient; hence, identification can be (reated as a pattern classifi-
cation problem [3]. It 1s difficult 1o identify the iransient by a
human operator when the preceding patterns of some tran-
sients are very similar and the patterns change further with
time. Recently, attempts have been made to solve transient
identification problems using a computer-based system

In this transient identification problem, the classification
may involve spatial and lemporal patterns. Temporal patterns

usually involve ordered sequences of data appearing with time.

Spatial patterns mean the unique patlern of each transient,
variations of the same transient which may cccur under differ-
ent operating modes or al different break sizes.

The transient identification systemns for NPPs have been
developed using techniques such as an Artificial Neural Net-
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work (ANN) |4, 5], fuzzy logic |6/, nearest neighbors model-
ing optimized by using a genetic algorithm [7], adaptive tem-
plale maiching [&], and observer-based residual gencration [9].
All of these systems are still considered as a prototype or are
under evaluation and have not yet been applicd to real operat-
ing NPPs,

The ANN and fuzzy logic approach can absorb spatial
variations, but can nol provide proper solutions for temporal
variations, Se¢ it is reasonable 1o adopt a double stochastic
approach for the classification of the patterns. The Hidden
Markov Medel (HMM), a double stochastic process, enables
medeling of not only spatial phenomena but also lime scale
distances. The TIMM can be used to solve classification prob-
lems associated wilh time series input data such as speech
signals or plant process signals, and can provide appropriate
solutions by ils modeling and learning capabilities, even
though it does not have the exact knowledge to solve the prob-
lems. Mast of the HMM applications for pattern classification
in dynamic processes have a iypical architecture Lo solve a
spatial-temporal problems, bul the target systems are different
as in dynamic obstacle avoidance of mabile robot navigation,
radar target, human action. American sign language, hearl
signals. sonar signals, two-handed actions, conditions of an
electrical machine, deep space network anlenna, moving Hght
displays, environmental noise, and human genes in DNA. But
the HMM has never been applied for transient identifications
in NPPs.

The goal of this paper is to provide a real-thne transient
identification system [or use in NPPs which demonstrate the
spaiial and temporal modeling and learning capabilities with
hidden Markov models. To demonsirale ihese capabilities,
simulated NPP parameters arz collected and clustered to
build hidden Markov models for transient identification pur-
Poses.

II. Hidden Markov model for transient Identification
The problem of transient identification is defined as the
recognition of transient types, @ given lhe sequential inpul
patterns X; at time £ The input pattern X, is mathematically
defined as an object described by a sequence of features at
time ¢ [10].
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X:(x,,xz,---,x!,---,xd) (l)

The space ol input pattern X, consists of the set of all possi-
ble patterns:

X.cR? ; RY is a d-dimensional real vector space.

The & observed input data up 1o time ¢ is defined as D :

(P {AXLLJ,' - .X—L,X'} - {2)

The set of possible lransient classes @} af time 7 forms
the space of classes €2 :

Q= {wl DD, f, ¢ is the number of classes. {3

The classes £2 are assumed 1o be mutvally exclusive and
exhaustive. The recognition task can be considered to be the
finding ol function #, which maps the space of input patterns
@« tothe space of classes Q.

S > 0 (4)

A dynamic process ollen exhibils sequentially changing
behavior. If the one short-time period is defined as frawme, the
probability of the frame transition is different from each tran-
sient in NPPs. Therelore, the probabilily of frame exislence
and the fransition between frames can be statistically modeled.
The probability of a transient occurering in an WPP is already
given and is called the @ priori probability. When a transient
has occurred in NPPs, the type of transient can be delermined
only by selecting the type of transient % with the highest a
prioii probability P{e3) This decision 15 obviously unrea-
sonable. It is more reasonable 1o determine the type of tran-
sient after observing the trend of time-series major variables.
namely, to gei Lhe conditional probability P{e | @+-«). This
conditional probability is called the a posteriori probability.
Decision-making based on the @ pasteriori probability is more
reliable, becanse il employs both a preori knowledge together
with observed lime-series data [11].

Classification of the unknown patiern X7 corresponds to
finding the optimal model @ that maximizes the conditional
probability, P{ay | D), the probability that lhe system is

inclass @ attime ¢ giventhat ®-+ was observed at time ¢,

P(ay | Drs) over the type of transient ¢k . We can apply
Bayes rule to calculate a pesterior? probability,

max P(‘D' v | @) P ()

P(6) | @) = s

3

where

P(Do) = gp(cp,_k @) Plar) . ()

The conditional probability, observing @ given that the
system is in class ¥ attime . P{Mi-r | o) comnes from com-
paring the shapes of the transicnt models with input observations,
while the @ priorr probability P(ey) comes from the transient
probability which represents how olten the transient appears in the
NPP. Since  P{Dr+) is independent of @, we get

P(&‘}M)r—fc) o P((Dr—k 3

=" [P | )P (). ”

[n fact, a priori probability P} can be calculated in
NPPs, and should satisfy the lollowing equation,

3 Plo) =1 (8)
=1

But the transient idenlification syslem does not cover all of
the transients occurring in NPPs, and consequently can not
satisfy eq. (8). Therefore, the prescnt observed data controls
the decision. P(Dr—4 |my) is called lhe likelihood of @D
with respect 1o the set of samples. In real impiementation,

priovi probability  P(gy) can be assumed that the oceurring
probabilities of all lmnsxents are equal [12]. The ma}umum
likelihood estimate of € is, by definition, that value of @
that maximizes P(P-i|ap). In this identification problem,
HMM is used Lo eslimate the conditonal probability
P(@et | ). By using HMM, the patlern variability in pa-
rameter space and time can be modeled effectively [11, [3].

Using HMMSs in a classification problem with the Bayes
rule and maximum likelihood training requires two things: the
evaluation aof P(CDr_k|a),) for the implementation of the
Bayes rule and the maximization of the likelihood for the
tiaining of the classifiers. Fortunately, there exist computa-
fionally efficient procedures [or these two tasks, HMM pa-
rameters are estimated from the Baum-Welch algorithm and
guarantee a {inile improvemenl on each iteration in the sense
of maximization of likelihood. An HMM is trained for cach
transient from a set of training data, and an Herative maximum
likelihood estimation of model parameters from cbserved
time-series data, [ncoming observations are classified by cal-
culating which model has the highesi probability for produc-
ing that observation. The detailed definition of FIMM is de-
scribed 1 relerence [ 14].

I Transient identification system
1. Preprocessing

Tiaining and test data from the test simulator should be
converted to a praper codebook which is input data for HMM
identifier. Preprocessing means to make a codebook, and this
method is divided into two techniques, normalization and
veclor quantization,

The inpul symptom vector fo be used for vector quantization
have same value as displayed in a real plant instrument because
it is directly received from the test simulator or the plant com-
puter in NPPs. The range of inpul data values are significantly
different. Therefore, it should be normalized before using the
input data of the clustering algorithms. Normalization is one of
several transformation techniques. 1t has the effect of reducing
the parameters 1o a common range. This provides a measure that
allows the relative importance of any factor or interaction to be
identified more clearly. [t improves the mumerical accuracy of
the regression and the computaiion of significance.

I the distribution of the variable’s values are of normal distri-
bution, it is reasonable to be nommalized by maximum value.
But, most of the values of the specified variable are distributed
in upper region in case of normalized by maximum value. Tt is
undesirable to use the input data of the clustering algorithms. It
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is more reasonable 0 normalize between its minimum and
maximum values, In similar way, il can be also considered that
mean centered normalization. In the mean centercd normaliza-
tion method, data between mean and minimum or maximum
range is linearly distributed. 1n other way, we can consider non-
linear data distribution of belween mean and minimum or
maximum range considering the standard deviation.

Fealures may be represented by continuous, discrete, or
discrete-binary variables. It is expected that the feature vector
contains most of the classification information available from
the object. Feature extraction is an important task for classifi-
calion or recognition. In feature extraction, data can be trans-
formed from high-dimensional pattern space to low-
dimensional feature space. Vector quantization (VQ), the pro-
cess of approximating a block of continuous amplitude signals
by a discrete signal is one method of feature exiraction. The
idea is to guantize each continuous vector to one of a rela-
tively small number of template vectors, which together com-
prise what is called a codebook. The sequence of codebook
indices obtained in this way forms the desired sequence of
discrete symbols. In this paper, two VQ methods, k-means
algorithm and Self-Organizing Map (SOM} [15] are intro-
duced 1o compare the identification capability.

2. Real-time test environment

1t is mare realistic to receive training and test data directly
from the operating NPPs. But severe transient or accident
seldom oceur in real NPPs and it is almost impossible to make
transient conditions only for experimental purpose. Therefore
it is necessary 1o use the siroulator for operator training or
simulation code ready for safely analysis la implement and
test the transient identification system. In this implementation,
the test simulator was modified from the compacti nuclear
simulator which is installed at the Korea Atomic Energy Re-
search Institute Nuclear Training Center for fraining non-
opcrator personnel to fit testing the transient identification
system. The test simulator is divided into two major parts: a
mathematical modeling program, whicl: execules the plant
dypamic modeling program in real-time; and a supervisory
program thal manages user instructions.

The mathematical modeling programs consist of static and
dynamic parts. The inilial state, a 100% full power condition
is set up in the static calculation, which is performed once
before the starl of the dynamic calculation. The dynamic cal-
culation is performed every 0.2 second to represent a real-time
mathematical modeling simulation. The test simulator pro-
vides the [unction to activate 79 predefined malfunctions This
{unction realizes the transient or accident condition to get

training data and to test the transient identilicalion system [16].

3. Data collection

The nine typical transients are selected among different postu-
lated transients that may occur in NPPs in consideration of the
simulation capability of the lest simulalor because ihe purpose
of Lthis paper is lo demonstrate the capability of hidden Markov
models that apply to the transient identification problem. The
description of the targel transients are as [ollows:

1y ATWS {Anticipated Transient Without Scram)

2y FWLE (FeedWater Line Break inside containment)

3) LOCA (small Loss Of Coolant Accident)

4} LSLC (Loss af Steam generator Level Coniroller signal)

5) MS1V (Main Steam [solation Valve closure)

6) MSLI (Main Steam Line break Inside conlainment)

7) MSLO (Main Steam Line  break Oulside containment )

8) PORV (Power Operated Relief Valve stuck open)

9) SGTR (Steam Generator Tube Rupture)

The inpmi symptom vector is a colleclion of the principal
variables and the status of major equipment [rom the transient
simulation in the lest simulator. The major variables and
equipment  staius used to idenlify the nine different types of
transients and one normal staie are summarized in Table 1.

There are two types of data, i.e., training data and 1est data
The training data are needed 1o train the cluslering algorithm
and HMM identifier. To test the classification capability of the
HMM identilier, test data are also needed. The training and
test data are collected from the lest simulalor. It is needed o
gel more widely spread training data per transient to design a
reasonable classifier. In this experiment, we considered differ-
ent aperating modes and different break sizes in each transieni.
The HMM may absorlk the variations from the different oper-
ating mades and diffeient break sizes in a lransient.

The training data are provided off-line from the test simula-
tor. Major vaniables and the equipment stalus are combined for
the Input symptem veclor in each transient when ihe test simu-
lator emulates a transient situation. The transients arc simu-
lated in the test simulator by activaling the malfunclions dur-
ing normal operation, then gel major variables, such as lem-
peratiie, pressute, flow, pump on/off status, or valve
open/close status. The lraining dala are collected from dilTer-
ent operating modes, such as 50%, 55%, 60%, 65%, 70%,
75%, 80%, 83%, 90%, 95% ol reaclor power and [ull pawer
and different break size in each transient and normal state.
Each training data consist of around 64 time interval inpul
vectors, Each time interval is | seconds, and this means
around | minule ol data are collected.

"able 1. List of input vector valiables.

No Variable description Unit

1 Pressurizer pressure kg/fem”

2 Pressurizer level Normalized
3 Reactor coolant average temperature Dep C

4 Steam generator plossure kg/em?

5 Steam generalor level Normalized
6 Reaclar power %o

7 Reaclivily Yo/l

8  Average fuel temperature Deg C

9  Feedwater line flow o /hr

10 Main steam line flow o /he

11 Steam flow [rom sieam generator m*/he

12  Steam pressure [rom steamn generator l{g/cm2

I3 Secondary radiation monitoring MicroClec
14 Conlainment pressure kgz’cm2

L5 Containment lemperature Deg C

16 Contaimment humidity %

I7  Presswrizer relief tank pressure kg;’cm2

18 Pressurizer relief tank temperature Deg C

19 Net electrical power MWe

20  Position of main sleam isolation valve Normalized
21 Reactor trip signal Digital
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The test data are collected off-line and on-line. The off-line
test data are collected by the same method as fraining data.
But they are collecled by different operating modes and differ-
ent break sizes to generate diverse lest cases such as trained
operating modes and non-rained break sizes, non-irained
operating mnodes and trained break sizes, non-trained operaling
modes and non-trained break sizes, and trained operating
mades and trained break sizes. The on-line test data [or any
operating modes or any break sizes arc gathered ditectly fram
the real-time test sintulator through data communication be-
tween test simulator and the transient identification process.
The test simulator is executed every (.2 second and the calcu-
lated simulation variables are stored in the shared membry
The transient idenlification process receives on-line test data
[rom the shared memory every one sccond.

4, Real-time transient identification system

The major component of lransient identification system are
vector quantizer and HMM identificr. Fig. 1 shows the block
diagram of the implementied transient identification system.
First, the collected training data are normalized, then the train-
ing data arc used to lrain the veclor quantizer with off-lne.
The trained vector quantizer will be used to vector quantize
the test data. A veclor quantized codebook of training dala are
the training input sel of the HMM identifier.

The test symploms are vector quantized to give input code-
book of the HMM identifier. In this implementation, the 4-
means algorithm or SOM are used to cluster the input vector
into L disjoint sets. In this implementation, the 300 were cho-
sen for an optimal solulion afler several atlempts, meaning
that every input veclor is assigned to one of 300 clusters,
The codebook size is 60, which means the system receives
60 time interval input vectors cvery one minufc to classify the
lypes of transients. [n the initial one minute, the test resulls are
incorrect because the codebook size is less than 60. The sys-
temn should wait until 1l recelves one minute amount ol input
vectors, This initial stage is called the “Ready mode.” During
the nexi lime step, the sysiem receives another 60 time in-
terval input vectors as sliding window method. To gel input
symptom veclor every second, the svstem shouwld be imple-
mented with a real-time.

Vector HMM
Quuantizer Identifier

Vector Narmal Madel
quantized (D
ohservations "%
Transiant ot 1| Translent

L leval - "
codebook whan&fication H . Oescrption

Tast | pattema
Simulalor

o

the property that as time increases, the stale index increases or
stays in the same state. That is, the stale always proceeds from
left to right. The basic model consists of six states which have
less than two direct transitions to the right state. Few initial
conditions are given to this model, and these initial conditions
are equivalent 1o all transient models The re-estimation algo-
rithm of the HMM may give a local minimum of the likeli-
hood function. It is impottanl lo choose initial estimates of the
HMM parameters so that the local minimum is the global
minimum. Experience has shown that the uniform initial esti-
mates work well. We also choose uniform initial estimates in
this implementation by assuming that the observation symbal
probability is equivalent to each state.

The training is performed by a forward algorithm and a
backward algorithm, and making a re-estimate from the
Baum-Welch algorithm in each model. given lhe multiple
input abservations [11]. The re-eslimation is done until the
convergence condition, P {0 |E) > P(OjA) . ie, the
new model estimates are more likely to produce the given
abservation sequence (3, is satisfied in each model. The prob-
ability, P{O|A), is calculated by the optimal path which is
obiained by the Viterbi algorithm for the given input observa-
tions in each model. The transients are classified by examining
which madel has the lighest probability for the given input
observations, The prototype of fransient identification syslem
was implemented m an HP7477 industiial workslation and the
programming was done using “C” language.

1V, Experimental results

In this section, experintental test results for a base model arc
described. Then, the sclected model is suggested and the im-
proved model is proposed to imprave identification accuracy.
The base model consists of Max-min normalization method,
SOM clustered by training and test data. and 6 states HMM
identifier. The experimental tests have been carried out afler
training of the veclor quantizer and HMM identiffer. Table 2
shows 1he results of the base model off-line test. In this experi-
ment, there are the following four test cases to compare the
trained or non-trained data fov operating modes and break sizes.

® Case | ! Trained operating mode, MNon-irained break size.

* Case ]I | Non-trained operating mode, Trained break size,

* Case [T : Non-trained operating mode, Non-trained break size.

* Case [V ! Trained operating mode, Trained break size.

Table 2. Oft-line 1esi resulls for base model.

Y
UaREzIEuL

“Shared
Mymowy || Lo
training - pa:'rmnl:tor ng| [ Translent hiodel 1 o [”

' | [rranutent ousis |
trattring —~

TIS

Tig. 1. A block diagram of transient identification system,

A lefi-to-right HMM has been considered appropriate for
processing 1hose signals whose properties change over time.
The underlying stale sequence associated with the model has

Case Average

Case [ | Case Il |Case I[[|Case IV| Except

Tramsien Case IV
ATWS - | _1oo - 100 100
FWLB 100 100 100 140 100

LOCA 273 L0D 30.0 100 51.6

LSLC 45.5 100 50.0 100 64.5

MSIV - 100 - 100 100
MSLI 0.0 100 | 048 100 32.3
MSLO | 727 | 800 [ 700 [ 100 74.2
PORYV 100 | 100 | 100 | 100 100
SGTR 0 | 10 [ 100 [ 100 100
Average | 63.6 | 97.8 | 643 | 100 76.8
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As presented in this table, most ol lransients arc correctly
identified when given trained break size and non-trained oper-
ating mode. But in the case of non-frained break size, the rec-
ognition rate is remarkably lower than the trained break size.
There is almast no difference when comparing the case of the
trained and the non-trained operating mode. Bul the identifica-
lion rate for the non-trained break size is lower than the non-
trained operaling mode. We estimated that the HMM can ab-
sorb these break size differences. But in real implementation,
the HMM can not completely absorb the break size differences.
In the case of IV, with both trained operating mode and
trained break size, the identification rate is 100%, This means
the trained data can be completely identified.

The on-line test for base model was performed vsing on-line
test data which covers various operating modes and break
sizes for each transient. The on-line test results are depicted in
Fig. 2. The total identification rate of the on-line (est reaches
95.8% within 79 seconds, but the immediaile delecling rate is
only 44.3%. In the case of LOCA, MSLIL, or PORY, thc tran-
sients are correctly identified from incorrect transients. In the
initial stage of these transients, there are no distinctive features
between preceding patterns of identilied and misidentified
transicnts. The distinclive features appeared afier a few sec-
onds, then, the HMM identifier was able to identify the correct
transient types. Il takes scveral iens ol seconds to detect a
SGTR transient because its distinctive fealures appear after
several tens of seconds in a real situation.

fatrmmrar mmrr e e re e e vy ey e

Idenbificalion rale (%)

R N A A A A SR S
0 6 10 15 20 25 30 35 40 45 60 &55 60 65 70 75 A0

Time {second)

Fig. 2. On-line identification rate for base model,

The selected mode] will be suggesled according to the results
of the previous cxperimental lests. The selected model means
adopting a proper normalization method, clustering algorithm,
and the number of HMM states. According o the results of
previous experimental tests, the selected model has Max-min
noimalization method, &means clustering algorithm, and six
states of left-toright HMM. The normalization methods are
compared based on the assumption that the input normalization
might influence the resull of classification. The Max-min
method has advantages in the present case. Consequently, the
Max-min method is chosen for the selected model. To choose
the proper clustering algorithm, two types of clustering methods
are compared. Considering the results, the 4-means algorithm
has better performance than SOM. [inally, the &means algo-

rithin method with taining data is chosen 1o implement the
selected model. There are no effect on the identification rate
based on the number ol states in the HMM. The sclected model
adopts 6 states as Lhe number ol state in the HMM,

The total identification rate of the selecled model is 100%
within 7 scconds, and its immediate detecting rate is 54.0%.
The total identification and immediate detecting rate of lhe se-
lecled model iz higher than the base model. In the selected
model, the detecting rate of correct transienis from incorroct
transients is significantly reduced from the base model, Accotd-
ing io the results of the above experimental tests, il can be con-
chuded that the selected model has good performance. But il can
not be said that the selected model is robust. Therefore, three
more experinental tests such as superimposing random noise,
adding systematic errar, and testing by untrained transients were
performed 1o verily a robustness of the selecied model.

The random noise is superimposed on to the original tesl data
excepl two variables such as position of the main sieam isola-
tion valve and reactor tiip signal. The terminology “2% ol ran-
dom noise” means maximum +2% of random noise is superim-
posed on to test data in the normalizing progress. The tost results
of superimposing random noise are depicted in Fig. 3. In the
case ol 2% 1o 8% of random noise, the identification ratcs are
same as no tandom noise case. The identification rate decreases
slightly at 10% of random noise. But, the identification rate is
abruptly decreased more than 12% of random neise. It can be
said that the proposed iransient identification system is robust
within 10% of random noise. In neural network applications, the
recognition rate is linearly decreased by increasing the noise
level [2], ar the recognilion rate is maintained 1o 16% of noise
level, then the rate abrupily decreases [17].

Identification rate (%)

[\ 2 4q & B 10 12 14 16 13 20

Random naise (%)

Fig. 3. Test results of superimposing random noise.

Additional lests are performed where the systematic error
sipnal is added dilferently from the random neise. The first
error signal is a “loss of pressurizer level signal” which has
large variations when the transients occur. In this case, the
identification rate is significantly lower than with no error
signal. From this fest result, to ensure the performance of the
lransient jdentification syslem, valid signals through a signal
validation process should be provided. In the application of a
neural network case, the system can identify the fransient
properly even though some sensor signals are missed [3]. Bul
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the second error signal is a “loss of main steam flow signa]”
that has small variations when the transients occur. In this case,
the identification rate is the same as il there was no error sig-
nal. This means the error signal which has small variations
have almost no effect in identification rate.

It is desirable that the never-trained transient should be
classified as an unknown transient. In particular, a severe ac-
cident can happen because of an inadequate operation due to
incorrect identification. The implemented system can classify
the unknown trangient like the other neural network applica-
tions [3, 9, 12]. I1 is classified as unknown fransient that the
output path probability ol the HMM identifier is less than the
threshold which is the least outpul path probability from all
test data. In the test regults, three untrained transients are clas-
sified as unknown transients. But four untrained transients are
identified as normal states. In the case of the incorrect classifi-
cation, the FIMM identifier may not be exactly identified be-
cause the clustering results are very similar to the misclassi-
fied transient.

In the selecled model, there still exist temporary misclassi-
fied transients. Finally, two heuristic {raining approaches are
attempted to improve the classification accuracy. One of these
approaches is corrective fraining [18]. The heuristic corrective
training method re-estimate model parameters using validation
data set which are not included in training or test data set.
Alfter re-estimation of HMM parameters using training data set,
perform transient identilication on the validation data. If any
(ransient is misclassified, adjust the estimated model parame-
ters to reduce the probability of misclassified transients.

The other heuristic approach is principal component method.
The principal component is applicd ta increase discriminaling
power between two transients which are expressed by similar
patterns. This method add weighting factor to important vari-
ables that have large impact on identilication results when
vector quaniization is progressed. Consequently, the classifica-
tion rate is slightly increased when principal camponent
method is applied. In conclusion, I'ig. 4 shows the classilica-
tion rate of three on-line lests depend on time. The classifica-
tion rate of selected model is much better than base modal,
and the classification rate of improved model is a little better
than selected madel.
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Fig. 4. On-line identification rale [or three modcls.

V. Conclusions

The proposed transient identfication system has lols of
advantages as described above., However, there are still a lot of
problems that should be solved before it can be actually ap-
plied to an operating NPPs. Further efforts are being made to
improve the system performance and robustness Lo demon-
strate reliability and accuracy to the required level. It is a se-
vere drawback that the training data are extremely rarc com-
pared with other applications. The HMM-based identifier is
more difficult 1o train properly since they tend to require more
additional train-
ing data, however. il is a difficult job in this area. Therelore,
research for the modified HMM structure or new algorithm for
the estimation of HMM parameters is suggesied. As shown in

training dala. I is more desivable to  get

experimental tests, the identification performance heavily
depends on clustering methods, 1t s important to find more
efficient clustering method which is suitable for the proposed
system. The HMM-based identifier can not completely resolve
the “don’t know™ issue which is the hot topic in this research
field. It should be considered the “don’t know” issue in the
future. Il also needs to seek a fitness measure to confirm the
degree of belief. Besides improvements described in the im-
proved model, it needs to be integrated with other features
such as knowledge processing [19] or neural network [20] Lo
Improve its accuracy.
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