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Pulse Code Signal Recognition using Integra—Normalizer
& B %
{(Sung-Soo Kim)
Abstract - A scheme is proposed for measuring similarities between the binary pulse signals in the pulse-code

modulation using the Integra-Normalizer. The Integra-Normalizer provides a better interpretation of the relationship
between the pulse signals by removing redundant codes, which maps all possible observed signals to one of the codes
to be received with relative similarities between each pair of compared signals. The proposed method provides better
error tolerance than L metric, such as Hamming distance, since the distances between pulse signals are measured not
only by the distance in L? but also by the shape of the waveforms. This method also contains a potential that may be
useful for the time-delay detection in the pulse-code modulation.
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1. iIntroduction

This paper focuses on developing a scheme that better
interprets the relationship between pulse code waveforms,
so that we can improve the error correction rate in the
pulse-code modulation (PCM) by reducing the number of
redundant codes that are not mapped into any of the
source codes. Generally, the system of transmission called
0
1, where a set of N binary digit sequences can

(binary) pulse-code modulation uses only two digits,
and
represent M=2" number of signals which we call codes.
The binary digits are represented by electrical pulses in
order to transmit the codes over a communication
channel. The waveform generated by PCM consists of a
sequence transitions between two levels where the pulse
patterns, the sequence of waveforms, are the binary
waveforms that would be transmitted to the receiver.

At the receiver, however, we must be able to
identify the information on the received signals. The set
which is a subset of the binary

M=2" where an N binary digit sequence,

of pulse signals,
waveforms
needs to be selected at the source and recognized at the
receiver by being mapped to each of the pulse codes of
source. Recognition of a received signal is established by
being mapped to the only one signal out of M waveforms
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with the minimum distance based on the metric we
employ, such that the received signal is recognized even
there are several bits that are different from the bits of
the waveform to be recognized.

Usually, in a band-pass data transmission system, the
messages in the source are mapped into a symbol every
T second and the received signal at a detector is
transferred to a vector receiver that maps the data into a
message to be recognized. In the source, the task of
transforming an incoming message m;, i=1,2,, M, into a
modulated waves,(# needs to be done by putting apart
as possible as it can be. Any set of M energy signals,
s:(9),
orthonormal basis functions, where N<M. That is to

is represented as a linear combinations of N

say, we may represent the given set of real-valued
signals in the form

s:(0= 3ys,9.(0, 00,71,

where the coefficients of the expansion are defined by
T

5= fo sag b (Ddt, 1,7

and the real-valued basis functions ¢,(2), ¢,(8), -, ¢ (8
are orthonormal to each other, by which we mean

f0T¢ i(f)¢,-(t)dt={(1):0

The distance between signals in a source signal space

M

;=

1' 2’ e

1,2, =, M,

ifi=j
ifiEj
T
is lls;—sglt = fo [s/(D—sH)dt for a pair of signals

represented by the signal vectors s;(#) and s,(H. In the

similar way, the received signals r(# defined in the
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interval [0, 7] is detected as one of the possible source
signals using a L! metric usually such as

D —s 2= [7 () =s. (0 a
where s, ()= gs,mi(t). te (0,71, i =1, 2, -, M. However,

the received signal is one of the 2 ¥ number of codes

instead of being mapped into one of the source codes
s;(» where 2 %> M usually. Since the possible number of
the received signal is much greater than the number of
source signal, there is a possibility that the received
signal »(# can be detected to be mapped to several
source codes, while the error correction can be
established using the property 2> M.

Suppose that the basis functions for N dimensional

signal space in both of the source and the receiver are
defined as
G~-0NT @AOT
1.0, te[ N TN ]
0, elsewhere,

¢xo={

where ¢=1, 2, 3, 4,»-, N. For example when the
number of source signals is three, such as
siD=¢1(D, sp(=¢3(H and si(H=¢3(H, which are the

basis functions  of N=3, the distances d(s;(#,s,(9),

are all equal to —‘[—;L

The geometrical interpretation of signals s;(#), s(#, and

d(sx(8), s5(8), and  d(s;(8), s3()

s3() in the three-dimensional space quite agree with the
geometrical interpretation of the signals defined in
7H=[110]
{100 ¢2(D ¢2(HIT is in the same distance from both s(2)
and s(#) such as d(#{(9),5())=d(#(,s:(H), which implies
that #H#» yields a piece of useless information. The
problem in this result is that a received signal is

[0, 7] . In this case, a received code

recognized as two waveforms that have two different
shapes of waveforms.

In order to remove the redundancy of mapping to
several codes being in the same minimum distance in L?
metric sense, the shape of waveforms is considered such
that those waveforms in a similar shape yield a high
relative similarity. The weakness of using L? metric for
measuring distance between waveforms is that the
information on the waveforms may not be considered.
Instead, the global difference between waveforms is used
as a tool of measuring distance between waveforms. The
distance in the signal space, especially when the signals
considered are functions of time, may not represent the
difference between signals where the distance is defined
by the Euclidean metric in L2 For instance, when the
number of basis is three, the eight source signals
precisely the geometrical

S 000> Soo1, 75101 represent

relationship between s3's, where there are some
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elements in R with no difference between the
waveforms in L? metric space (For example, sgiq.5 1115 100
have the same L? metric distance with respect to sj.
This implies that the set of three different waveforms
So10.5111.511¢  are in  the same distance by being
As the

dimension of signal space increases, the expansion for N

recognized as the same signal to s, )

dimensional signal space constructed with ¢, ¢, én
which are orthonormal to each other, it becomes clear
that the distance measured by the L? metric may
disagree with human’s intuitive understanding. When
N=8, s{H=[1110000 1], s2(H=[11100010],
and s ()=[1111000 01 defined in a unit interval,
have the same distance 0.25 in the L® metric space
where two pulses are different.

Intuitively, without loss of generality, we see that s,(¢)
is closer to s{(# than to s;(» with respect to the
waveform shape. This is one of the counter-examples of
defined
conventional method that measures distances between the

measuring  distance using L* metric.  This
signals, fails to measure the distance between the
waveforms because the distance is defined globally
without considering local information. This limits the
number of waveforms to be classified, especially in the
pulse code modulation. However, when we consider the
shape of the waveform, the difference becomes a function
of time in ¢te [0, T

The information on a signal’s shape is important in
demodulator where a received signal is detected and
recognized by comparison with another signal with
respect to the time variable fe<[0,7]. The information
on the shape of waveform and the metric defined with it,
yields a better recognition than a L? metric. It is one of
the withdraws of the least square error method that a
mathematical method and human’s intuitive understanding
do not meet [1, 2, 3] In this paper, human-oriented
interpretation of distance between signals is added to the
mathematical scheme by considering the shape of a

signal using the Integra-Normalizer.

2. Integra—Normalizer An Operator for Waveform

Comparison

Without loss of generality, let X be a space of
real-valued functions of bounded variation [6], defined in

the unit interval 1. Let a distance between two signals in
X be denoted as Eu(f.g)= [(Ah-g(®)ar, which is

known as the Least Square Error (LSE), that is the

metric in L? metric space [4, 5, 7). There are some cases




that the LSE method of measuring the distance between
signals does not interpret the relationship between
functions as human'’s intuition does [1, 2, 3). In order to
remove restriction on LSE, an operator defined as the
Integra-Normalizer is developed [2].

With A# as an integrable function over the unit
interval I, a monotonically increasing function can be
generated by an #-times integration over [/ with
0<AD<1. Let g(» also be an integrable function with

variable ¢ in the unit interval I Let ©" be = times
. . . 0"
integration and I be the quotient Max(0) so that,

for n==#k, fi=I"(H, &'=I"(g become continuous
monotonically increasing functions. Let’s define I as the

Integra-Normalizer.

The relative similarity is measured by Similarity=e =~/

for the waveforms fgeX, such that the relative
similarity can be mapped into [0,1] by letting the
waveform interval 7=1.0. One of the good properties of
the Integra-Normalizer is that it interprets the relation
between functions more closely to human's intuition than
the least square error method does because the
Integra-Normalizer measures the relative signal energy as
a function of a variable, .

The procedure of measuring distance between
waveforms is illustrated in the Fig.2, where a metric is

defined using the Integra-Normalizer.

The compared signals
AD : an observed signal

!

Integra-Normalizer

I"= — @ for nth— order Integra— Normalizer

Max(0™)
v

Distance in space L?
Eu(f.e9= [ L/ (0 —e(t'Var
where fA=I"(p), &'=I(g

v

Relative similarity mea‘su‘rement
Lo “ELUt
Similarity=e A
which maps the relative similarity in

[0, 1]lCR

Fig. 1 Block Diagram
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3. Experimental Results

Let s, s;, and s;X be the waveforms as shown in
Fig.2. The values of E (5.5, Els253), and Eulsy s3)
are equal to 0.257, such that the three signals of the
N=8 dimensional signal space are located in the same
distance to each other respectively.
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Fig. 2 A counter example of LMS (Least Square Error)

In L?! metric space, the waveforms s, and s; are in
the same category with respect to s;, so that the degree
of similarity between the two signals s, s, turns out to
be the same, which is not the way human’s intuition
understands. This ambiguity can be avoided by the
Integra-Normalizer described in Fig.l. The results
obtained through the 1st order Integra-Normalizer show
that s, is closer to s; than to s, which agrees with
human’s intuitive understanding when we consider the
shape of wavefrms. The relation presented in Table.1
agrees with human’s intuition, which is an advantage of
the Integra-Normalizer to the LSE.

Table 1 Relative Similarity Measurement Using Integra-

Normalizer
Similarity Si S2 S3
S1 1.0 09716 0.9793
S2 09716 1.0 0.9947
S3 0.9793 0.9947 1.0

As it is shown in Fig. 1, the waveforms are applied
into the Integra-Normalizer such that the waveforms
which are not separable in L? metric become separable.
For example, for N=4, there are 2'=16 number of
recognizable waveforms. However, we eliminate one
waveform of no energy, x=[0 0 0 0] from the procedure.
In Table2, four sub-groups are generated such as
Gi=1x, 202353, Go= x5, x5, 01,25, x9.x0),  Ga=[xu, 1 x5, xul,
Gy=I[x). The values of energy contained in the

sub-groups are 0.25, 0.5, 0.75, and 1.0 for Gi, G G,
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and G, respectively.
Table 2 Relative Similarity Measurement Using Integra-

ormatizer w.rt. x=[1 0 0 0}

Waveforms Similﬁx\jty in Dist;aigyce in Leasg rrs’o(}'uare
Xy =([1000l 1.0 0.0 0.0
Xy =[0100] 0.8645 0.1667 05
X3 =[0010] 0.6592 0.4167 05
x4 =10001] 0.5134 0.6667 05
X5 =[1100] 0.9592 0.0417 0.25
Xg =1{1010] 0.9006 0.1047 0.25
X7 =(1001] 0.8456 0.1677 0.25
xg =0110 0.7788 0.3122 0.75
Xg =100101] 0.7361 0.2500 0.75
Xp=M0o11] 0.6073 0.4887 0.75
Xy =[1110] 0.8948 0.1111 0.5
X1 =01101] 0.8697 0.1398 05
X33 =00011] 0.8637 0.2222 05
X y=M0111)] 0.8007 0.3333 1.0
X5 =0111] 0.7165 0.1875 0.75

As it is shown in Table 2, the similarity of each
waveforms to x=[10 0 0] is measured based on the
shape of the distribution of
waveforms that are in the same distance in the signal

signal’s energy. The
space of LZ, are separated using the Integra-Normalizer.
In general, for the N-dimensional signal space, we can
compare 2" number of waveforms with N-number of
basis in PCM.

4. Conclusion

In this a metric that measures similarities

between the
introduced, which improves the performance of pulse code

work,
binary pulse-code signals has been
signal recognition via measuring similarities between

pulse-code signals (waveforms) using the Integra-

ormalizer.
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The Integra-Normalizer scheme also contains the
property that might be applied to the time-delay detection
for the pulse-code signals (waveforms). Moreover, the
scheme introduced in this work can be used for further
applications  in

theoretical development and practical

communication, control, and other related areas.
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