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A New Approach to the Synthesis of Two-Dimensional Cellular
Arrays Using Internal Don‘t Cares
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Abstract - This paper presents a new approach to the synthesis of two-dimensional arrays such as Atmel 6000 series
FPGAs using internal don‘t cares. Basically complex terms which fits to the linear array of cells without further routing
wires are generated and they are collected by OR/XOR operations. In previous methods, complex terms are collected only
by XOR operations, which may not be effective for nearly unate functions. In this paper, we allow complex terms to be
collected by OR operations in addition to XOR operations. First, complex terms that lies in the ON-set of the function
are generated and collected by OR operations. The sub-function realized by the first stage becomes an internal don’t
cares and they are exploited in the second stage which generates complex terms collectable by XOR operation.
Experimental results shows the efficacy of the proposed method compared to the previous methods.
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1. Introduction the architecture limitation is the same as the above except
that the number of inputs to a logic block is limited to

CA(Cellular Architecture)-type devices are characterized  {pree and outputs to two.

by relatively small logic blocks and local connectivity
between them. A generic model of CA-type FPGA

o
(el
-

consists of the array of cells which are connected to their
neighbours and to local buses; vertical and horizontal.
Consider an example in Figure 1 which shows a

cell array as follows:

a
multi-output function implemented in a two-dimensional ’S_

Sl
BlElS
[

Cy = (a+bd) -c¢ 1 I I:] &

C, = a-b+c ¢,

(;:,i Z (Ca®?]+ ¢ Fig. 1 Example of cell array implementing a multi- output
i = cg@cz‘ function

For the synthesis of CA-type FPGAs, several
approaches have been presented. The approaches from the

For simplicity, we assume that the number of inputs to

a cell is limited to two, and the number of outputs of a ) - ] o
first group utilize various decision diagrams including

FDDs(Function Decision Diagrams){2], and KFDDs(Kro-
necker Functional Decision Diagrams){3] and tree

cell is limited to one. Furthermore, only one input is taken
from the local bus and the logic blocks can realize an
some of their combinations. In Atmel 6000 series inverter,

an AND, OR, EXOR, NAND gate, a wire and FPGAs[1] structures[4]. However, these approaches may suffer from
the drawback that when the diagrams are directly map-

ped to a rectangular area, they may lead to a significant

. &_ @ E} : ﬁ}p?;j( TR @j:#*% waste of cells due to the routing difficulty and sometimes
@ A ek BRAH RARL due to its tree like structure. Secondly, an algebraic
TTREYEeR WA BEEE B - HE . ’ )
W ES 1969 1151 611 approacb presented. by Sarabi et al. [5] FJrov@es a
RS T 20004 13 150 well-defined theoretical background for the manipulation of

Boolean functions applicable to CA two dimensional arrays.
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Later Leel6] improved this result by using ETDDs(EXOR
Our
planes:  the

synthesis model is
complex(input)
collecting(output) plane as in [5], but the collecting plane
can use OR operatoins as well as XOR operations as

Ternary Decision Diagrams).

composed of two and

shown in Figure 2. Note that in [5] or [6], it is required

Primary [nputs Primary Qutputs

VO v| VZ e pu .....
M — Linear Cell Array EXOR
: Plane
M, — Linear Cell Array
M,y — Linear Cell Array oR
: Plane
M, — Linear Cell Array

Fig. 2. OR-plane terms are considered as don’t cares to
EXOR-plane terms

that only XOR operations are used in collecting plane.
However, this restriction becomes an obstacle to the

efficient generation of complex terms resulting in
unoptimized cell arrays. In this paper, we propose a new
structure where both OR operations and XOR operations
are used to collect complex terms in the synthesis
procedure. First, complex terms that lie on the ON~Set of
the function are searched and collected with OR-operation
if they reduce the cost function. After these ON-Set
complex terms are generated, they can be used as internal
don’t cares to the generation of XOR collectable complex
terms. The proposed cell structure is similar to the
conventional PLA architecture, but a linear array of cells
can implement a broader class of Boolean functions than a
simple product term in PLA. Since each cell can realize
an AND, OR, EXOR or some of their combinations, the
outputs of the cell array constitute a special class of
Boolean functions called Maitra terms(or complex terms)

which are named from Maitra Cascade[7].

ETDDs are similar to BDDs (Binary Decision
Diagrams), but each node has one more branch which is
an exclusive-OR of the other two branch

functions.(Functions with three outgoing edges per node
are called TDDs(Ternary Decision Diagrams). For an
overview see [8]) Our approach uses ETDD instead of
cubes as in [5] and exploits the decompositions of KFDD
which are inherent in ETDD to generate complex terms
instead of mapping the diagram directly to cell arrays.(A
KFDD of a function can be constructed by selecting two
of the three branches in the ETDD of the given function.)
Our approach can make use of don't care values during
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the minimization process. Experimental results are descri-
bed for completely and incompletely specified benchmark
circuits. These experiments underline the quality of the
approach.

The paper is structured as follows: In Section 2.
notations and definitions are given that are of important
for the understanding of the article. The minimization
method based on ETDDs is described in Section 3 where
don't care assignment is studied with its application to the
generation of OR/XOR collectable complex

Section 4. and our experimental results are described in

terms in
Section 5. Finally, the results are summarized.

2. Preliminaries

Boolean expressions which can be directly mapped to
linear cell arrays are defined and are called complex terms.
The following definitions are taken from [5]:

Definition 1. A complex term is defined recursively as
follows.

1. a literal is a complex term.

2 i M is a complex term and a is a literal then
a-M, a@M, a + M are complex terms, where a
varigble never appears more than once in the

string.

input

Note that a specific ordering is imposed on

variables to form complex terms.

It is not difficult to see that a complex term can be
implemented in a cell array without extra routing wire.

Example 1.

1. A logic expression (a+b)c + d can be implemented in
cell arrays as shown in Figure 3. However, (atb)(ctd) is
not a complex term and it needs another routing wire to
be realized in the CA[5]. Note that the input ordering of
a b c d in this example.

2.  Three implemented in
two-dimensional cell arrays of figure 1 to form a

is imposed

complex terms are

multi-output function.
Given a Boolean function filV) and a variable v € V,

f(V) can be expressed as:

AV) = v-fBv- £ (D
= v-gBf; (2)
= f,®v-g (3)

LB = Av=1) = f(v=W call these

where g =



equations as Davio expansions and particularly equation 2
and equation 3 are called as positive Davio decomposition
and negative Davio decomposition, respectively. Note that
equation 1 is called as Shannon decomposition which is
used in BDD representations.

3. Generation of complex terms using don't cares

Considering a KFDD which uses Davio expansions
without considering don't cares, a path from the root to a
leaf constitutes a complex term. Therefore we try to select
decompositions which results in the smallest number of
different paths in the KFDD of the given function. Note
that the KFDD is implicitly contained in the corresponding
ETDD which is again easily constructed from the BDD.

In the following we give an example to demonstrate the
different representation size resulting from choice of the
decomposition formula:

Example 2 In figure 4, when Shannon decomposition
is used it results in 3 complex terms as follows.

f=1af®af,
ab(c ® d) D abed

However, if negative Davio decomposition is used as in
figure5 only two complex terms are needed as follows.
f= a '(fz@fa)@fa
a(b®D c® d) @ bed.

]

The first attempt to manipulate don’t care terms in
Davio expansions appears in [9]. where the basic rules for
calculating constrained don’t cares in Davio expansions are

fy, and  fzDf:,

affects the final result because the don’t cares amongst
them are mutually constrained. Consider the example of
figure 6 which is given in [9].

given. The order of minimizing f; ,

Fig. 4 Function f in which Shannon requires three

complex terms
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Example 3 7o get complex terms using positive

Davio decomposition, f7Bf, is calculated first. To do

this, the don’t cares in f; are decided to 0" so that

s )

result becomes,

is simplified to a constant ‘1. Therefore the

f=a'(fz®&@fa_ B
=qg -+ 1® (bed ® bed D bed)
cd
Bbcdoo 01 11 10 f. b 00 01 11 10
4
col1]ofl1]o \f/o\D"@o\
ot 1] @ °®° 1
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11lolo|1]o cd
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Fig. 5 Function f in which negative Davio expansion
needs two complex terms
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Fig. 6. When /f-@f, is calculated first, don't cares in f5
are fixed to O resulting in three complex terms

which includes 3 complex terms.

However, if f; is calculated first, the result becomes

as in figure 7 where only two complex terms appear as
SJollows:

f= a ({;EBJ‘,,)@J‘_;
=a - (c+ DD cD d.

cd
%00 01 11 10 b ,09\ ot /11\10
001} 0 1\0\__%_,01)0\1)0
£ 11of1)o (1)
01 N 1 07/\5 hA R
" - - ® 0 o1 11 10
10 - | - Il 104 |1
fa\
oNt 1140

Fig. 7 When f; is calculated first, it results in two
complex terms finally
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Therefore, to generate better results both cases should
be considered. In this example, we can observe that the
utilization of don’t cares at the first part of the calculation
of positive(or negative) Davio decomposition puts
calculation of the

decomposition. In other words, the final output depends on

restrictions on the remaining
the order of calculations. Moreover, it requires the change
of the subfunctions in each step of the minimization
procedure, which means heavy costs in computation time
and space. To overcome this limitation, an approximation
algorithm is proposed as in figure 8 in which don’t cares
in  f5(f,) of positive(negative) Davio decompositions are
ignored in the estimation of the number of complex terms
for f to make each step of the calculation independent of

the other steps. Again, the cost of a new node is
calculated by adding smaller two costs. Also note that no
changes are made to the functions, and hence no new

nodes are added to the existing decision diagram.

cost_dc(d, dc)

/* retums the no. of complex terms needed */
/* d = an ETDD node, dc = don’t care terms */
/* d — then, d — else : cofactors of d */
/*d— xor = d — then e d — else */
if(d+dc=1) return 0;
if(d implies dc) return 0;
if(d is the last variable in the path) return 1,

1 = cost(d — then);

r = cost{d — else);

la = cost_dc(d — then, dc — then);

ra = cost_de(d — else, dc — else);

x4' = cost_dc(d — xor, dc — then);

x4 = cost_de(d — xor, dc — else);
/% select two branches with smaller costs */

. 2 1.
return min(lg + re, | + Xda°, r + Xa )

Fig. 8 Estimation of the number of complex terms with

don’t cares
For the example in figure 6 , the function cost_dc()
compares 3 sets of minimization as in figure 9. Note that
negative decomposition needs only two complex terms

which is optimal in this case.
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Fig. 9 Result of the approximation in three Davio

expansions. Blank boxes in (b) and (c) denote
don’t care minterms ignored and they are treated
as 0's.

4. Generation of OR/XOR coliectable complex terms

To exploit the above cost function in the synthesis for
complex terms, the collection of complex terms with
inclusive-OR operation is considered as shown in figure 2.
First, complex terms which lie in ON-set of the function
are obtained by expanding SOP cubes. In figure 10, P
denotes a set of prime cubes of the function f. For the
cubes in P, it is tested whether it reduces cost_dc value
when it is added to the don’t care of f. If so, the prime

cube is added into the set of ON-set complex terms and
finally the don’t care of f becomes its external don’t cares
and the ON-set complex terms. Then the ON-set complex
terms together with external don’t cares are applied to
gen_EXOR_terms() in figure 11 as don’t cares to generate
complex terms in EXOR-plane.

The procedure for generating EXOR-plane terms is
basically same as cost_dc() in figure 8 except that the
expression for the path from the root to a leaf is
generated. Since each node is associated with a specific
decomposition type, the expression of the path can be
obtained by expanding the expressions of each node. For
example, if a node selects [;+ #{Shannon decomposition)

in cost_dc(), the subexpressions corresponding to the node

become ‘v + (subexpression for d->then)’ and ‘o

d->else)’.

subexpressions can be further simplified. When a cofactor

(subexpression for However these

is a constant, two terms are combined to make one

complex term. Without loss of generality, assume that

fo=1



gen_OR/XOR_term(f,dc)
{
/* f = a Boolean function */
/* dc = external don’t cares of f */
Let P = a prime cube set of f
for all cube ¢ € P {
if(cost_dc(f,dc) > cost_dc(f,dc+c)) {
OR_terms = OR_terms Uc;
dc = dc + ¢

}

/* Num of OR_plane terms=| OR-terms | */

/* Num of EXOR_plane terms=cost_dc(f,dc) */
/* Now generate EXOR_plane complex terms */
gen_EXOR_terms(f,dc)

}

Fig. 10 Overall algorithm for generating complex terms in
OR_plane and EXOR_plane

Then,

U‘f,,+7)'f';j

=v+—z.1-f;=v+f;

In this case, the subexpression for the above example

becomes 'v + (subexpression for d->else)’. Also if fDf,

= 1 the positive and negative Davio decompositions are
simplified to get reduced number of complex terms as:

5. Experimental Results

Suggested algorithm in this paper has been implemented
in C and run on Pentium 300MHz UNIX system for
experimentation. The benchmarks for incompletely specified
functions are taken from [10].

First, we consider fully specified functions. Table 1
shows the comparison of the number of complex terms
obtained by our algorithm with the results of [5]. These
benchmarks do not contain external don’t cares, so the
terms generated in the OR-plane has been used as don’t
in EXOR-plane. To compare the
benchmarks which appear in {5} are listed and it
showed about 30% improvement. In Table 1, vgZ showed
considerable reduction in the number of complex terms
compared to others. The reason comes from the fact that

cares to the terms
results,

vg? is a nearly unate function and it can be optimized
with  OR-operations than XOR-operations. 14
ON-Set complex terms played a major role in reducing the

rather

W5 Dont care® O/ 83 olXtel M widel M2 4 u
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total number of complex terms. The column OR shows the
number of OR-plane terms and the column EXOR denotes
the number of EXOR-plane terms. Note that unate or
nearly unate functions tend to generate more ON-set
complex terms, especially as in vg2 More benchmark
results are given in Table 2. Since results from other
methods are not available, comparison is made to the
number of product terms in the input file.

gen_EXOR_term(d,dc)
/* generates EXOR_terms for a ETDD node d */
/* dc = ETDD node of don’t cares */
{
if(d is terminal node) {
generate the path from the root to d;
return,
}
1 = cost(d — then);
r = cost(d — else);
x = cost(d — xor),
la = cost_dc(d — then, dc — then);
1a = cost_dc(d — else, dc — else);
xd' = cost_dc(d — xor, dc — then);
x& = cost_dc(d — xor, dc — else);
select minimum of (4 + ra, 1 + X&', 1 + Xa'%
if(la + rq is selected) {
/* use Shannon expansion */
gen_EXOR_terms(d — then, dc — then);
gen_EXOR_terms(d — else, dc — else);
) else if(l + x& is selected) {
/* use negative Davio expansion */
gen_EXOR_terms(d — then, 0);
gen_EXOR_terms(d — xor, dc — else);
} else if(l + x4' is selected) {
/* use positive Davio expansion */
gen_EXOR_terms(d — else, 0);
gen_EXOR_terms(d — xor, dc — then);
}
}
Fig. 11 Algorithm for the generation of EXOR-plane

complex terms

6. Discussions and future research

In this paper, the manipulation of ETDDs to minimize
functions with don’t cares for the generation of complex
terms is discussed. Davio decompositions with don't cares
generate different results by the method (and/or the order)
of matching specific values to the don’t care terms in
fo s
changes in the functions in each step of the minimization

procedure which results in large overhead in computation
time and space.

each  of f5 and f,Df; Moreover, it requires

To overcome this problem, an approximation algorithm
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Table 1 Comparison of the number of complex terms for
completely specified functions

our result

name (5] OR EXOR | total time
(sec)
5xpl 33 0 24 24 0.41
card4 30 0 20 20 0.46
clip 57 23 29 52 1.86
clog8 84 2 74 76 3.04
cmlpd 54 6 63 69 2.42
cnrm 52 0 55 55 1.83
cu 15 1 16 17 0.62
f51m 30 0 21 21 0.42
inc 26 4 24 28 0.47
mip3 17 0 17 17 0.24
rd53 13 0 9 9 0.15
rd73 36 7 17 24 0.63
sao2 26 0 28 28 0.80
1481 18 0 10 10 15.22
vg2 179 14 15 29 050

total 670 56 423 479

Table 2 Experimental results for more benchmarks

. #product our result —
terms OR EXOR | total
(sec)
apexd 1732 544 270 814 28.97
conl 9 4 3 7 0.07
duke? 242 53 111 164 10.92
misex1 32 5 15 20 0.17
misex2 29 0 27 27 1.00
misex3c 255 196 21 217 68.37
sqrt8 30 0 14 14 0.25
squard 85 0 19 19 0.18
table3 645 305 214 519 61.23
tableb 606 343 66 409 95.71
xorb 16 0 1 1 0.05

is proposed with its applications to the synthesis of
complex The experiment 30%
improvement compared to existing methods and currently
the algorithm is being tested with broader class of
benchmarks. With further
implementation, more improved results are expected.

For future works, refinement of generating OR/EXOR-

terms. shows about

refinements in the

plane complex terms for multi-output functions will be
studied. In this paper, only previously generated complex
terms of other subfunctions are considered exhaustively
which can be time consuming and may not lead to an
optimized result. Also the development of optimal ordering
techniques and their application to the problem of complex
term generation can be studied. Even though the variable
specified functions has been

ordering for completely
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studied in [6], the ordering for incompletely specified
functions could be much more difficult.

Also, to reduce the delay time of the output signal, the
cells for collecting the complex terms are to be modified.
When the complex terms are collected in a tree format
instead of collecting serially, the time for the collection
could be reduce from O(n) to O(log n), where n is the

number of complex terms.
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