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Enhancement of QRS Complex using a Neural Network based ALE
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Absiract : This paper deacitbes the application of a neural network based adaplive line enhaneer (ALE) for enhancemeanl of the
QRY complex corrupled with backeround noise Medified fully-connecled iccunient neural melwork, which is the combined
stuelure of RElman'z and Jordan's RNNs. is uzed as @ nonlinear adaplive filler m the ALE The connecling weighls belween
nelwolls nodes as wcll as Lhe paramelers of the node aclivallon funclion such as gain, slope, and delay arc updated al each
Hervation using the gsmadienl descend algorilhm The modified nelwoils is firstly cvaluated by performing the identificalion of
unlinewn linear and nenlinear systems Then, the real ECC signal burted with modemate and severe backgronnd neise is
applied Lo the ALE using a nonlinear ncural nolwork adaplive filler In oider to enhance the weak QRS complex. [t is verfied
thal Lhe modified nelwaork 1s zuitable for use in syslem 1denlification Simulalion resulls also show thal the neural nelwork
hased ALD performs well Lhe enhancement of the @RS complex Mrom nozy ECG gsignals

Key words @ QRS enhancement, Adaplive hine enhancer. Noise modehng, Neural nelworks

or abnormal can be donelll, Tor the ECG signal corr-

[ntroduction upted with noise, the preprocessing such as enhancement

ol the QRS complex and cancelation of background noise

Detecion of the QRS complex 15 ane of the most 1m- Is requited to improve the signal-to-noise ratio ol the

portant tasks in ECG signal analysis. Aller identifying wanled  wave embedded in noise ke other signal
the QRS Dbeats, the heart rale calculation for modeling processing applicabions(2,31.

cardiac, the ST-segment examination lor evidence of A number of QRS deteclors which worle well m the

ischemia, or the waveform analysis lor classifying normal presence of moderale nolse have been designed[4,5]. The

widely used method Lo delect the QRS wave mcludes

bancpass filtering. squaning, averaging, and then threshal-

ot gde FoddEe dhEqlytule] 9o Ay ]
3eELq] ding. The ECG, however. Is a nonhnear signal generaled
FAAA FHskn, (730-701) AE A AddE 18 G oF T from a tme-varying nonlinear system, 1e, human hody
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Thus, we encounter with the following problems; the [re-
quency band of the QRS complex may he dilferent [or
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cilferent sulyects and even for dillerent heats ol the samc
subjecl, The [requencies of Lthe nomse and the QRS com
plex partially overlaps each other In addition, under the
improper environment the measured ECG signal accom
pames, severe background nose that has wideband fre—
quency components.

Varous adaphive filtering schemes have been used 1o
achieve these tasks[6,7.3]. For examples tn biosignal pro-
cessme, thev are applied to enhance EEG signals in the
presence of BECG arlifacts and o detecl letal ECG sev
erely contaminated by thc matcrnal cardiac signals. In
these schemes, the coelflicients of the adaplive [iller are
updated using adaptive algarthms such as the least memn
square(LMS) or the recursive least square algorithms
The LMS algorithm has been generally used because ol
simple structure and casy to implement These papers use
the adaplive noise canceller (ANC) scheme in wluch an
additional reference input is apphed to the Lnear adaptive
Jiller. However, this lncar structurc and adaphive algo-
rithm 18 not suitable to process the signals ol nonsta—-
tionary or nonlinear characierishics, 1e., 1L may nol appro-
priate to deal with the QRS complex embedded m wide-
band random noise

Neural networks have been successfully  applied 1o
more complex signal processing Sice the neural net—
works consist of distribuled neurons to process nonlin-
earity and have the albty to leam [rom its environment,
neural network—based liltermg melhods are  potentially
uselul for oume-varving signals with inherent nonlineariiy
The ECG signal generated [rom nonlinear svstem is dilli-
cult to adapl to a linear model In olher words, 11 cannot
be whilened much by a linear adaptive [lter Lately the
periocic ar quasi-periodic signals wilh an additive noise
are delected or enhanced using the bDller structure of

_neural networks[9.10] The QRS beats iz considered s a
quasi periodic signal

This paper presents an ofI-line method for enhancing
the QRS complex buried in bﬁcl{gmund noise using the
ALE scheme with a neural network adaptive [filter The
ALE is a special form of the ANC that is designed to
suppress the wideband noise components of the input,
while passing the narrow-band signal components with
Little attenuation. The objeclive of this paper is to enh
ance the weak QRS beats under the presence of moderate
or severe background noise It assumes. however, that
onlv a signal including both the QRS complex and back-
ground noise is available,

In this paper, we used the modified recwrrent neural

el-gatslA] #2191, A5E, 2000

nelworks(MERENN) as a nonlmear adaptive Glter The [ullv
connecled MRBENN 15 Lhe combined structure of both the
Elman's and the Jordan's BNNs with one-lo—many veri-
able connection=[11-13] Jordan developed a netwoarl mo-
del capable ol displaving temporal variations and temporal
context dependence In Elman networks, rather than the
autputs of the network beimg led mto the mput unils as
m Jordan's model, the activabion resulls of the hidden
unils are fed Into the wmpul wuts While the Jordan's
RNN has appeared 1n o varety of control applicalions, Lthe
Elman's RNN has been often applied w the problem of
symbolic sequence precdiclion

The connecting welghls as well as the gain and slope
ol the node uchivation unclion are updated with the error
backpropagation algotithm  An adaptively tuned multilayver
neural networle 1s used Lo moedel the nonbnear, time—
varving Background noise. We expecl In the QRS enha-
ncement that (he neural network model predicts non-QRS
portions of the signal better than the QRS complex itself.
In olher words, the neural network based nonlinear
adaptive  filter can recogmize the quasi-penodic chara-
cleristics of the ECG activity by attenuating while back-
ground nose, To improve the possibilily of the QRS
enhancement ol normal heart beats with severe back-
ground noise, lhe highpass [lter. i necessary., can he
nsed as a preprocessimg stage m order Lo reduce the eff-
ect of the neural networks duc to the low [requency
components.

For the evalualion of the modified network, we com-
pared the MENN with a conventional NN by performing
hnear and nonlmear svsiem idenmilication with the test
signal of the arlilicially generaled Gaussian random noise.
In the experiment of the QRS enhancement, we used the
real ECG  signals with  background noise  Simulation
results ndicate that the modified MERNN 13 more suitable
for the syslem identification than the RN It also shows
that the MRNN based ALE enhances well the weak QRS
complex under the presence of moderate or severe backg-
round noise 1 real ECG data.

Neural network based ALE

Fig. 1 shows the structure of the ALE that can be used
to enhance quasi—period QRS beals bured in wideband
background noise The ALE has only a primary input
() unlike the ANC 1n wlhich two nputs of primary and
reference  signals are used. Instead of being derved
scparately, the relerence mput x(/— A} to the adaptive
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filter 13 obtained from the prmary input by mserting a
delay  such  that the required  decorrelation  of noise
componenls s achieved This delay called decorrelalion
delay plavs a role Lo remove the correlation between the

noise of the prumary mput and cne of the reference input.

() =s(MN+nii} = alf)
> >
Y
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f
o Adaptive
=My e [0

Fig 1. Adeptive line enhancer

The ohjective of the ALE 1s to enhance a wanled
signal s(4) in the measurced signal x( that is conlanum-

ated with additive noise a{f.
HO=s+ nld (1

Ior the detection of ECG beats. the signal s(8 repre-
sents the QRS complex. and the noise #(# represents all
olther componenis of the ECG signal mcluding the P oand
T waves. additive instrument noise, power mierference. and
electromvographic nomse. These time-varymg noise com-
ponenls are often correlated, 1.e. they are colored noise

For the enhancement of wealk QRS waves in severely
contaminated background noise, a nose removal filter is
required  to rteduce the correlaton components m  he
noise  Among many other noise removal [ilters, a linear
adapuve auloregressive modeling techmque is very suit-
able for real-time processing of LCG signals. In thus
model, 1t assumes that the sampled data =(#H fom the
colored nmse process of background signal at time £ can
be predicted by a linear combination ol previous ¢ data

samples {#(¢—2|i=1, - g}
wlly= i/_‘L‘ w(Hnli— i+ (D (2

where {w({)|i=1, -, g} 15 the sct of filter paramelers.
and &(£) 1 the modeling error which gradually appro—
~ximated while noise 1 the model 1s correct It is observed
thal the QRS complex wuavelorm consists ol relatively

high [(requency components Hence, by selecting Lhe
proper length ¢, the lter can be adjusted so that it does
not predict the QRS complex  s{#, Therefore, when Lhe
signal x(# s apphed to the flter, a large prediction error
gignals the presence ol a desired QRS complex. After the
delaved signal of x(#) 15 apphed to the flter. the oulpul
15

Wy = Z wl (i — )

= Z wl2)s(i— o+ Z w( Nwl — 0 (3
=+ nlH—e(d

where 5(#) is the distorled QRS complex after passing
through the filter. As long as the observation window
length ¢ is kept small enough so thal the high [requency
comporents m  s(£) are not modeled by the sct of [lter
purameters w{f, the & 18 cquivalent o Lhe s{# since
the hackground nelse #({#) 15 well prediclted from the
previous noise s(f— . If the background noise consisls
of wlnte naise, ie, #{H=a(d, the 3 1= almosl same
as s(h.

In order 1o cope with the time varying nature ol the
hackground noise 11 QRS enhencement, the adaptive LMS
dlgorilhm has been used to compute filler ceellicients
Due to the nonlinearity inherent m the background noisc
processes, lhe elleclivensss of such a linear model to
perform the QRS complex enhancement may still be very
limned What 18 needed 1= to choose a method to accur-
ately model the nonlinear relationship that exisls among
the samples of the background noise processes. Thus, our
approach {or dealing with the inherent nonlinearity of the
BECG signal is to replace the lmear adaptive [ller with a
neural-network-based nonhnear adaptive filter.

Recently, a number ol neural networlis have heen si-
udied and Implemented  (or signal processing, ncluding
nose cancellalion Neural networks can he classified into
stalic and  dynamic networks based on their structures
and inpul-oulpul presentation For the gher degree of
signal processing, dynamic neural nerworks such  as
time—delay neural networks and recurrent neural netwarks
are adecuate models. They use leedbaclk loops or delayved
elements as memonies m order to process lemporal infor-
mallon, thus can perlorm well the more complex signal
processing, The neural network used as an adaptuve filler
in Uus paper is the combined structure of hboth the
Elman's and the Jordan's [INNs,

] Buiomed. Eng Res: Vol 21, No. 5, 2000
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Fig. 2. Modified recurrent neural networks

Fig. 2 shows the modified [ully conmecied MRNN. It
consisls of three layers. All the umils In a layer are
connecled to all the vmts in the [ollowing lavers In the
input laver, it has external inpuls and additional inputs
that are fed from all neurons of the hidden layer. In the
hidden layer, it has nodes connccled to Lhe wput layer,
and additional nodes that are [ed [rom all neurons of the
output layer, These additional mputs are also fully con-
necled to every other node in the next laver of the
networlk, 1e thev are one-to-many vanahle conmecting
weights These recurrent connections improve the dyna-
mics of the neural networks in order Lo elficienlly process
lemporal characleristic of the signal.

In the learnmng of the network. the conmecting weights
as well as the gain, slope, and delay of the node activ-
ation funecton are updated with the crror backpropagaton
All hidden
output lavers use a sigmoid transfer function as the acti-

algorithm. processing neurcns in the and

vation function. The cutput of the node £ is defined as

gln)

— sl ety —1 1]

(h

vil mh= f{net)) = .
e

where met, i3 the internal stale of a neuron and  g{xn).
s(x), and ¢'(#) represent the guin, slope, and delay of
the activation function, respectively They are considercd
as fume-varving parameters n this network, The mputs
{z(n) and =z.x)) and oulputs ( ¥(#) and 3,(x)}} of the

hidden and output layers of the network are

z,(m) = {buas, x1(m), -, xplan), 30— 10, -, v, el m— 1113}

glm={y,alm, o v, (), v (e—10,~, ¥ ol n— 11} (6)

vim=/{zln)} :f( i‘wﬂ(ﬂ) z,(n)), K =m-HN+1 (7}

o] F8a]A] 217,

A5, 2000

HFHL -

1)

sl = o0 = f( Z‘ wyln) gl n)), K= HN+ON  (B)

where p,(a) and 2{#) represent the inlernal states of

neurons of the hidden and output layers, IN, HN, and ON

arc numbers of neurons of wopul, hidden  and  oulput

layers,
The error of the network is as [ollows

EO) =% 3k = 53X dilm = vl o)

The purpose of the trainng algorithm 1 to reduce the
error, Elx) by adaplively adjusting weights e, (s}, wp{n)
v'(x) The changes of

and parameters  g{#). s{a), and

the weights and parameters are delined and obtamed as

follows
i) == 9, S = 600 1) 10y
Ag(ml=—12, aa?( fz) =p e H)Q%%Q (11
asty = 7. 2508 — 5 ey SN 12)
Av () :*?7,.% =g, e w)%l (13,
& n) :_% =gl n)—a%f))—) (14)

Above equations shows the incremenlal weights and
of the The
parameters of the hidden laver can be derived the same

parameters output  laver weights  and

way as those ol the output laver. The 7 (7., 7., 7, 7,)
The

momentum term is added to change only the connecling

represents the updatc rate for each parameter

up the lcarming. The incremental

Aw(m) Awy(n),  Aw,(n}t and the
Ag,(m), Asln), As{m). D n),

Av {n)) of the acthivation [unction are updated at every

weights o speed

connecting  weights

parameters ( Adg(nd.

tteration 1n the traming process

The convenuonal RNN used for the relative comparison
in this paper has only [leedbacks from nodes of the
hidden laver lo the input layer and its traming algonthm
updates the connecting welghts, nobt the parameters of
NENrons,

Experimental results

The NMRNN is tested Jor sysitem dentification to
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evaluate 1ts perlormance hy comparing wilh convenlional
Clman type RNN. Then, the real ECG signal corrupted
with moderate and severe background noise 15 appled Lo
the ALE using MRNN based adaptive [lter m order to
enhance Lhe wealk QRS complex.

1. System Identification

The performance of lhe neural nelworks in the svslem
identification is checked Dby the linear and nonlinear
unknown system models The suggested approach for the
purpose of this discussion is shown in Fig 3. In this figure,
lthe artilicrally generaied random Input sequence to the
unknown systom s taken to be zero mean value and 15 also
supplied io the neural networks, The training procedure
allows the nctwork lo settle with the estimated optimum
weighls using  input and output sienal pairs such as
{(d,'eJ,(S:;,SL-—b"',5;:—4.‘)}. £=1,2.--,

length of training data. Tn the rainng procedure. &) is

L where L is the

used as @ larpet signal, and mput signal veclor s.(x) and
recurrent connections [rom the hudden laver are used as
input signals. This approach can be applied to identify hoth
Imear and nonlinear dme invariant systems without any
change m the arclutecture because the network 15 capable of
synthesizing nonlinear mappings as well as linear ones.

s, (n) Time—invarant d, (n)
- Lnknown
System

e (1)

) T
Nedial | (1)

Netﬁ/orks

[

Fig. 3. System identification using neural networks

h 4

As an example of lincar sysiem dentification, we used
the [ollowing Ume nvariant system such as a filler,

Al = 09215} +0.107 5, () +0.336 5,0 (12) + 5, +(13)*(15
0.3365, - (32} + 0,107 5, _s(a1} +0.9215,_ 5 w)

The input signal s,(#) to this unknown sysiem 1s a
wlute (raussian random signal which has zero mean and
a standard deviation of 1.0. In the rammg procedure,
2000 and 2000 iterations of 1000 samples of input/oulpul
pars were perlormed to reach stable convergence for the

RNN and the MRNN, respeclively The learmng and Lhe
momentum rates of 0.7 were used for both nelworks and
the gam and slope rates of 0.4 were vsed for the MIRNN.
Since the delay parameter of the achivation [unclion does
not alfect much the performance, 1t 1 nol updated in the
networl.

Based on experiments, 1t is verified that both netwarks
wentify well the lnear system Thg. 1 shows the norma-
hzed power density specira of the mput signal, lLinear
system output, and MRNN output. Smee the NN ouimut,
not drawn in the figure, shows smmilar result to the
MENN output, 1t cannol be distinguishable visually the
overall difference between hoth networks Fig. 5 shows
the enlargement of frequency spectra of RNN and MRNN
cutputs from 1.225[rad] to 1508[rad] [lrequencies. 'rom
this figure, we can denuly the qualitalive difference
between networks. The performance of the MRNN 1s
beller than the RNN since the MRNN outpui is more

close to the linear system outpul.

I
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Fig. 4. Normalized power spectrum density of linear
system output and MANN output
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For the quantitative commparison, we calculate errors in

{ime and freguency domans usmng the following
eguations
f_er?:xld;»(hﬂ— 171?(;}1)‘ (16}
Foerr= 20| | fkdi{m) | —| ()| (7

where d{# and &») are oulputs of the systern and
the neural netwarly, respectively, The average of bD-limes
irials for the BNN and the MRINN _err=1.5323,
[ err=30.2952 and t_err=09200, [_err=170792. The system

identificalion using the MRNN improves 16650 times in

15

time domain and 1.7738 times in {requency domain belter
than ones using the RNN.,

As an example of nonhmear system identification, we
usad the system with the following difference equation.

d,'e.|.1<ﬂ)= 0.1561,-‘(??‘):—0.36];&_1 (?i-)

y i (18
0653 1)+ 0,187 (#} — 0245, (5

o gata A :

A21, ABE, 2000

The learning. momentum, gain, and slepe rales are (0.8,
0.4, 04, and 04, respectively, The number ol 1tcraiions 1s
G000 [ar the BNN and 3000 for the MRNN. Using ers. 16
and 17, we pget. the lollowing results, 1_err=0.4000,
[ err=102812 [lor the MONN, Lerr=03807, [_crr=19.2721
for the BNN. The MRNN performs 14518 times in time
doman and 1.8740 Wmes in [requency domain hetter than
RNN. The of
identilication belween the RNN and the MRNN 15 almost

the perlormance nonlinear  system
same as the casc of hmear svstem identification. These
resulls incicate that the modiled neural netwerk is more
sutable  [or both  linear and nonlinear  system

usc 1

identilication.
2. Enhancement of QRS complex

We used the real ECGr data, which had been collected
at [IST (Health Sciences and Technology) division of the
[arvard-MIT[14]. All ECG dala was measured vsing the
CH2000 (Cambridge Hearl Inc} syslem with the sampling
rate of 300[Hz]. This wvstem is capable of performing
on line analysis for mmeravoll level T wave alternans.

The network structure and the value of update rates
used in rhe experiment are as lollows. For hoth cases of
the moderate and severe nowse, the numbers of neurons of
mpul, hidden, and output layers are 5, 9, and |, respec—
uvely The delay M 15 sel to b The learmung rate of 07,
{he momenlum Tate of 0.7, the gain rale of 0.3, the slope
rare of 0.3, and the iteration numher of 2000 are used
Since the delay parameter does not allect the perlormance
of the networl, 1t 15 nol used in the cxperiment These
siructure and update rales are determined experuncntally.

Fig. 6 shows the enhancement ol the QRS complex
from the BECG signal severely corrupled wath background
noise We cannol idennly the QRS complex [rom the
original BCG signal (Fig. 66a)). The output of the nonh-
near adaplive filter 13 shown m Fig. 6(h) The QRS com-
plex s clearly distingwshed lrom hackground neise. This
explains Lhat the neural network based adaptive filter
removes background nase [airly well Since the [requency
componcnts of the QRS complex and background noise
are overlapped, the QRS complex 1z somewhat affected
while filtering. Ilowever, the signal to nose ratio 1s
Tror
Nllering performance, the same ECG signals is apphed to
line( TDL)
algorithm and ils [llerng resull is shown in Fig. 6lc),

apparently  mcreased, the relalive comparison of

the tapped- delay (iller structure uvsing LMS

The paramelers such as A=5, number of taps=10 and

step 2120=0.03 are used in hnear filtenng. The LMS



algorithm 1s repeated 400 times on the same signal. The

performance of nomse rejection in the LMS algonthm does
not Improve any more alter 300 iterations. From  the
figure, 1t is identified that the neural nelwork based non-
linear adaptive [iHer using emror backprepagation algor-
thm outperforms the TDL linear adapiive [ller using the
LMS algonthm  The backpropagauon algorthm can he
considered as an cxtension of the LMS algorithm  for
nonlinear umts, since hoth lechmques wse a  grachent
descent algorthm.

Fig 7 shows the (requency speclra of the cnipginal ECG
signal and the outpul of lhe MENN based adaptive [ilter
lor the severely cormupied ECG signal of Fig. 6{a). Fig.
7a) and 7(h) compare the specira hetween 0.02 z and 02

7, hetween 02 x and x The solid and dotted hnes
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Fig. 6. QRS enhancement undear seversly carrupted noise
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represent normalized [requency spectra ol the ongimal and
MRNN [ltered ECG signals. respectively, As shown in
the fhgures, higher [requency components of  the
haclkground noige are greally reduced while Lhe major
components of the QRS complex are still keeping with
reduced amplitude.

Fig. 8 shows the enhancement al lthe QRS complex
from the ECG signal under moderate backeround noise,
The ALE makes the QRS complex more apparent
comparing with the onginal ECG signal, resulting in easy
delection of the QRIS complex. We also identified that the
higher frequency compoments ol the original ECG signal
were reduced, similar W lhe case of severe background
nose. These simulanon results indicate that the MRNN
bascd adaptive [filter scheme 1 the ALE Is elfeclive [lter
structure Lo enhance the QRS complex by remmoving

higher frequency compoenents ol the background noise
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Conclusions

This paper describes the enhancement of the weals
QRS complex the ECG
background noise using the newral network based ALE.

frem signal  corrupted  with
Firstly, the performance of the modified recurrenl neural
nerworks is evaluated by identifying lhe unknown linear
and nonlfinear svstems. Then, the noisy ECG signals are
appled lo the ALE using the MRNN nonlinear adapuve
flter m order to enhance the QRS complex. It 18 shown

[rom the experimental results that the adaptively tuned

MRENN maodels well the nonlnear and tme-varying
wideband random noise. Thus, the modified neural
network hased ALE has Dbeen proved to he effective

slructure o enhance the weak QRS complex by reducing
background noise from the corrupted ECG signal It is
also verified that il consistently outperforms the conven-
Lonal near adaptive filtering approach.
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