영상통신에서 잡음 제거를 위한 새로운 세미 랜덤 인터리버 알고리즘

A New Semi-Random Imterleaver Algorithm for the Noise Removal in Image Communication

  • 발행 : 2000.08.01

초록

본 논문에서는 영상 통신 채널 상에서 발생하는 잡음을 효과적으로 제거하기 위해 터보코드를 사용하였다. 터보코드는 복호 성능이 우수하지만 시스템의 복잡도와 복호 과정의 시간지연 때문에 실시간 통신에는 부적합하다는 단점이 있다. 이 문제를 극복하기 위해, 본 논문에서는 터보코드의 부·복호기에 사용되는 인터리버의 크기를 감소시켜 영상 데이터를 전송 할 때 소요되는 시간지연을 줄이는 새로운 세미 랜덤(Semi-Random)인터리버 알고리즘을 제안하였다. 세미 랜덤 인터리버 알고리즘은 입력 프레임의 길이를 1/2 크기만큼 인터리버를 구성하고, 인터리버 내에 데이터를 입력할 때는 블록 인터리버 처럼 행으로 입력하며, 데이터를 읽을 때는 랜덤하게 읽음과 동시에 다음 데이터가 그 주소 번지에 위치하게 된다. 그러므로, 기존의 블록, 대각, 랜덤 인터리버와 알고리즘의 복잡도를 비교할 시 그 복잡도가 1/2로 감소되어 세미 랜덤 인터리버를 터보코드에 적용할 때 영상 데이터를 실시간 처리할 수 있다.

In this paper, The turbo code is used to effectively remove noise which is generated on the image communication channel. Turbo code had excellent decoding performance. However, it had limitations for real time communication because of the system complexity and time delay in decoding procedure. To overcome this problem, this paper proposed a new SRI(Semi Random Interleaved algorithm, which decrease the time delay, when the image data, which reduced the interleaver size of turbo code encoder and decoder, transmitted. The SRI algorithm was composed of 0.5 interleaver size from input frame sequence. When the data inputs in interleaver, the data recorded by row such as block interleaver. But, When the data read in interleaver, the data was read by randomly and the next data located by the just address simultaneously. Therefore, the SRI reduced half-complexity when it was compared with pre-existing method such as block, helical, random interleaver. The image data could be the real time processing when the SRI applied to turbo code.

키워드

참고문헌

  1. FPLMTS/IMT-2000, Report of the Tenth Meeting of ITU-R Task Group8/1, Mainz, April 1996
  2. Y. Fisher(Ed.), 'Fractal Compression : Theory and Application to Digital Images,' Springer Verlag, New York. 1994
  3. A. Averbuch, D. Lazer and M. Israeli, 'Images Compression Using Wavelet Transform and Multiresolution Decomposition,' IEEE Trans. Image Processing, Vol.5, No.1, pp.4-15, Jan., 1996 https://doi.org/10.1109/83.481666
  4. 공성곤, '부영상의 퍼지 분류에 의한 영상 데이터 압축', 한국통신학회지, Vol.14, No.9, 1997
  5. Berrou.C, Glavieux.A, 'Near shannon limit error coding and decoding : turbo codes,' Proc. ICC'93, pp.1064-1070
  6. D. Divsalar and F. Pollara, 'Turbo codes for deep space communications,' TDA progress rep. 42-120. Jet propulsion lab., pasadena, CA, pp.66-77, Feb. 15 1995
  7. Heller, J. A., Jacobs, I. W., 'Viterbi decoding for satellite and space communications,' IEEE Trans. Commun. Technol., Vol.COM19, No.5, pp.835-848, Oct. 1971 https://doi.org/10.1109/TCOM.1971.1090711
  8. Kohlenberg, A., Forney, G. D., 'Convolutional coding for channels with memory,' IEEE Trans. Inf. Theory, Vol.IT2, pp.618-626, 1968 https://doi.org/10.1109/TIT.1968.1054222
  9. D. Divsalar and F. Pollara, 'Turbo codes for PCS applications,' Proc. ICC95, seattle, WA, pp.18-22, June 1995 https://doi.org/10.1109/ICC.1995.525138
  10. Wang XD, Poor HV, 'Iterative(Turbo) soft interference cancellatin and decoding for coded CDMA,' IEEE Trans. on Communication Vol.47, No.7, pp, 1046-1061, July. 1999 https://doi.org/10.1109/26.774855
  11. Alexander PD, Reed MC, Asenstorfer JA, Schlegel CB, 'Iterative multiuser interference reduction Turbo CDMA,' IEEE Trans. on Communication Vol.47, No.7, pp.1008-1014, July. 1999 https://doi.org/10.1109/26.774851
  12. L. R. Bahl, J. Cocke, F. Jelinek, and Jraviv, 'Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate,' IEEE Trans. Inform. Theory., Vol.IT-20, pp.284-287, Mar. 1974
  13. Hagenauer. J, Robertson. P, and Papke. L, 'Iterative(turbo) decoding of systematic convolutional codes with the MAP and SOVA,' Submitted to ITG 1994 Conf., October 1994
  14. P. Robertson, E. Villebrun, and P. Hoeher, 'A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain,' in Proc., IEEE Int. conf, on Commun. (seattle, 1995), pp.1009-1013 https://doi.org/10.1109/ICC.1995.524253
  15. L. Lin and R. Cheng, 'Improvements In SOVA-Based Decoding For Turbo Codes,' Proc of ICC, pp.1473-8, June 1997 https://doi.org/10.1109/ICC.1997.595033
  16. L. Papke, p. Robertson, and E. Villebrun, 'Improve decoding with the SOVA in a parallel concated (Turbo-code) schem,' in Proc., IEEE Int. Conf. on Commun. pp.102-106, 1996
  17. Minowa T, Ogiwara H, 'Application of soft-in/soft-out Viterbi algorithm to turbo trellis coded,' IEICE Transactions on Fund. of Elect. Communi. & Computer Vol.E81-A, No.10, pp.2047-2054
  18. Franz V, Anderson JB, 'Concatenated decoding with a reduced search BCJR algorithm,' IEEE Journal on Sel. Areas in Comm., Vol.16, No.2, Feb. 1998 https://doi.org/10.1109/49.661107
  19. S. Hong, W. E. Stark, 'VLSI Circuit Complexity and Decoding Performance Analysis for Low-Power RSC,' Proceedings of the Military Comm. Conf. Vol.3, pp.708-712, Oct. 1998 https://doi.org/10.1109/MILCOM.1998.726916
  20. Ping L, 'Modified turbo codes with low decoding complexity,' Electronics Letters, Vol.34 No.23, pp.2228-2229, Dec. 1998
  21. F. Berens, T. Bing, H. Michel, A. Worm, P. W. Baier, 'Performance of Low Complexity Turbo-Codes in the UTRA-TDD-Mode,' Proceedings of the IEEE VTS 50th Vehicular Tech. Conf. - Vol.5, pp.2621-2625, September 1999 https://doi.org/10.1109/VETECF.1999.800261
  22. Ramsey, J. L., 'Realization of optimum interleavers,' IEEE Trans. Inf. theory. Vol.IT16, No.3, pp.338-345, May 1970
  23. A. S. Barbulescu and S. S. Pietrobon, 'Interleaver design for turbo codes,' Electronics Letters 8th Vol.30, No.25, Dec. 1994