1426 SI=EENI B =24 M7 W5Z @05

A AAUE FlEE SANLETY Be AR ol AL BAolA ALt ads Yz
Azl msbe wdd A9 Py Aeade] FoED ok RAAAALRE Hob ARUACl 4 Gue] Faddls
et Al datel 7hs] Aslae Ao FaAEA gt A B

ePEn Qurez YrAAelq Fad B A T
2 A w2l v BN FEE %'@5‘1% Zol £837] ugd], ol W He dA @AM AgEn 77
€ Aol Fad gad L 2FdqME 244246 9lo] temporal logic® Petd pel® o] 48 7a r’”l]]ﬂ% B
3 31v], Temporal logicsl <3t =) 7]‘{«1 2 91"1 | DIEdlC"ltE!S o4k B8 ol4ale] o2 Heje] EN HelE A
243)7 Pl netdl & sjEuls] B4L ol B4 YL 5ds=d =ee Mg e,

Formal Specification Methods for Distributed
Object—Oriented Systems

Sang-Bum Lee'

ABSTRACT

As distributed computing sysiems become popular. many modeling lechmques and methods have beon developed to
speciiv Whe spectfication lormally and venfy the distribuled/concwrrent syslems In spite of mportance of conmumcation in
distributed ohject-orienied systems, specifying of conmunicalion method gencrally has ol been emphasized i the design
phase. One reason is due fo the system designer misunderstandmg, that s, a speciicabon needs te he mdependent on the
implementation However, since definmg communrcation pattern in distributed object-oriented systems 15 more senous than
lhe required message passmg method n the design phase, specilymg the communication pattern 15 necessary nstead of
postponing until the implementation.

In this paper, 1wo formal specificanon techniques, temporal logic method and Petn nets method, for the communication
In distributed systems are discussed, One is based on the temporal logic, which speerfies the dillercnl patterns of prirpirive
predicates This method enables w define the underlying mechanism which can be interpreled as constrants, The Pelr
nel method helps to specify the dynamic behavior of communicational patlerns using the properties of Pefri nets,

1. Introduction dependent parallel-executable modules tend
supporl the message passing [or parallelism instead
Dustributed systems which consist of a set of in- of having a chared global memcry. Since object-
w o] A%= dae R TR N]]% o A7 orienled systems and distribuled systems share

tA 3 Y Edan daAgds) w

v 1988 109 289, AAlele. - 100wl 59 500 similar properties, the combination of these syslems

15 somewhat natural [I]. An object i an alject-
oriented system inherently has a suitable form [or a
distibuted systems [2. Therefore, the disiributed
object-oriented svstems have bhecn developed by
applying object-oriented fechmques 1o disiributed

systems

Meanwhile the object-oriented approaches to soft-
ware development have received an ncreased em-
rhasis since the emly 1980°s [3]. These new soft-
ware developmenl lechnigues are expecled to be
used widely due to powerful [eatures such as infor-
mation hiding. modulanty, abstraction, awnd locali-
zaoon [4). Syslems designed [rom thesc approaches
consisl of a sel of ohject modules and the slructure
of the system tends to be flal mstead of hierarchical
structure, One of the man fealures i object-
oriented systems is message passing, 1c., a set of
objecls comnmunicates with each other by sending or
recciving messages. An ohject begins to he activated

when it receives a message fom other object.

Most distributed

languages support perallelism between ohjects, but a

abject—oriented programmung
lew Ianguages support nter-objcct concurrence.
Basically there are (wo different types of message
passing’ synchronous message passing and asvn-
chronous message passing The message passing
method of syslems 13 mainly dependent on the com-
municalion mechanism of implementation program-—
mmg language. Whila CSP (3] supports synchronous
comrnunicatiort, ABCL/L [2], [6] supports asynchro-
nous message passing. Speafying of the message
passing method m the design phase has hbeen
gnored becanse the system designers believe that a
specilicalion needs to be independent on the imple—
mentation However, since dofinmg communication
pallerns in distributed syslems is more serious than
non-distributed sysiems, it 1= desiruble to decide and
specify the requircd message passing method 1 the
design phase mstead of postponing until the imple-
mentation phase. By doing this, an appropriate pro-

grammung language can be selected and the system

L EHRE AaE AT Ee BA S BE e 147

can Dbe implemented properly without losing the
requiremnents of the system designer. In this paper,
two specilication techniques particularly for the
message passing 1n dismbuted object-onented sys-—
tem developmenl are introduced. The outline of fhus
paper is as follows, In Section 2, the background of
iflus work is imroduced The specification methods of
message passing methods are discussed m Section 3

Sechon 4 contains the conclusion

2. Backorounds

2.1 Formal specification languages

Compared (o other system development, a fow
specilication languages are doveloped to represent
the specilication of desired systems according object—
ariented approaches. A specification wrillen hy a
formal specification language helps o prevent dif-
ferent people [rom interpreting lhe system dil-
ferenlly. Il enables o remove the ambiguily n the
spocthication. However, there is an overhead to
learn [ormal specification languages since lhese
typed languages are developed based on the math-
ematical theory and confain mathematical notabons
in ther syntax. Use of [ormal specidication ian-
cuages in software development has increased due
o their benclits. We have delined a [urmal spec—
ilicanon language, called THSL(Distributed Chiject
based Speciflication Language). partcularly for dis—
mbuted object-onented sysiem development Basically,
DOSL adopts some [eatures form C5F, ABCL/L and
lemporal logic expression [7]. One of promunent
[eatmres I DOSL is it powerful message passing
skatements which can express various Commu-
nicalion patterns explicilly The detailed [eatures of

this language are introduced in [8] and [9].

22 Temporal lcgie and cperafors

Temporal Logic{TL), delined by Pouveli [7], is a
branch of the proposmional iogic and contains tem-
poral operations which helps smply o represent Lhe

logical relationships among a class of time varying

1425 BSEEMZSE =FA W7 M3EE006)

cvenls and also infers such relationship from them.

TL can be viewed also as a special case of
Predicate Logic or First Order Logic (FOL) The
proof techmique for temporal logic is completely
decidable while that for FOL is only partially
decidable

The advantages of using TL can be summarized
as follows, 1) The inference techrues Tor TL are
more powerful lhan that Jor FOL. 2} It has more
expressive or modeling power Lhan that of the
Propositional Logic. 3) It has a complelely decidable
migrencing method, like that of PL.

There exisl many different types of TL that have
studied in mathematical logic and which have
applications in computer science, The vanous forms
of temporal logic differ from each other in two
aspects. the tvpe ol temporal operators or rela-
uonshps that are allowoed wn the formulas and the

nature of underlying time scale,

Temporal lagic formulas are defined bv combining
temporal operators, logical operators and logical
expressions. Use of systems 1z introduced in [10]
and [11]. The basic temporal operators are as
defined as follows.

=[] always true 0 the [utwe

~ {0 the next stale 15 lrue

- <> 1 sometimes or eventually lrue m the (wture

These temporal operators are used to denote the
cxplicil communication patlems in distributed object—
oriented systems according to therr semantics.

Sender Reeceiver Sendsr Rsceiver Sender Recaver

r & aqtie.
aquest regusst, | riguest |
b

aceopl aceapl aceapl

Lo

Synchronaus Asynchioronous
message passing messags Lagsing

(Fig. 1} The two message passing methods

fepiy or septye

T

3. Specification Methods of Message Passing

There are two ditferenl methods of commmicalion
m distithuted syslems: synchronous and asyn-
chronous These Two palterns are introduced ple-
tonelly in Figure 1 [n DOSL statements for mes-
sage sending and message acceplng are defined
explicitly by aftaching a temporal opcrator as a
prefix, 1. e, the rtemporal operalor precedes Lhe
message passing slatement o specily the specific
communication mcthod We assume that the mes—
sage passmg patlern is determmed by attaching a
temporal operalor in front of the message scnding
slatemenl instead of specilying the same operator Lo
the correspondimg message accepting slatement
again. In Table 1, modificd message passmg state-
ments m DOST. are deseribed. The [ull syniax and

[oral semantics of DOSL are defined in [3]

While the two operators. [and <, are used o
denote asynchronous message passing, and operator
(0 is used o represent synchronous message
passing according to their meanng. The opcrator [,
which means that the lollowing statement is always
true, 18 used to denote agynchronous message
passing n which # sender object does not receive
any inlormation hacls from o recciver objecl, ic. U
contmucs execuion immediately after sending a
message. A lemporal operator <> i used to repro—
sent asynchronous message passing o which a
sender object will recetve a requested atformation
eventually but 1t does not suspend its execulion
duting meantune, Another operalor (O 1s used Lo
denote synchranous commumezbion i which a
sender object has o wal unlil a receiver objoct

gels the message,

In facl, there 15 no direcl, relabionship between
temporal operalors and message passing methods
but we match cach other according lo ther
meanmg. To complement this, (wo specification

methods which enable to represent the concept of

time are introduced m the [ollowing subsections 1o
gpecily [ormally the message passing methods. In
addition, these [ollowing methods can be used to
deline the semantics of DOSL.

{Table 1} Message passing statements 1n DOSL

=
==

A
[

MRS NAEG 2T T WA LHOI 2E @7 1429

different typed communication patterns. a set of the
predicates is defined in Table 2. Denvation of the
set of rules [or specifying each message passmg

method is introduced in the [ollowing subsections.

{Table 2> A set of predicates for the logic specification

» message sendng slaloments
ofgend x to ()
T synchronous mMessage passulg, receiving an acknowledgment
ofsend x {0 Oy & gef)
* synchronous message passig, CCCvINg a rellln message
Oisend x o O/
o asynchronous message passing withoul
2 181U message
ofsend x to Oy & get v/
. asynchronous message passing,
TECEIVING 4 TCUN [1Cssage
» message accepling stalement
faccent x1

note! x is a set of parameters and Oby 1s an chyect
v is a fulure vanable where the relum miormation be saved

3.1 Temporal logic specification

In a logic specification, first of all, a sel of ele-
mentary predicales which represents relevant pro-
perues about the slates or the events of the system
needs to be delned. Bascd on lhese predicates, a set
of rues is mivoduced as a [ommal predicates [ol-
lowed by an arrow which represents the mmplhication
and followed by conseguence of the predicates.
Delaled explanalion of this approach can he found
in [9]. With these rules thc hehavier of a system
can be formally specified Here, we usge the lemporal
logic expression for specilving of communication
methods since 1t hag the power of expressing the
lapse of ume, Temporal logic specification method
[13] has received an atraction as a technigue to
specify a systom whose hehavior is relate to the

lapse ol tume, such as real-time sysiems

The underlying meanng (semantics) of the mes-
sage passing statements, the specification of com-
munication, are delned using a temporal logic spec-
ification method, Onc of the imporlant foatures is its
cxplicit expressiveness ol the communication pat-

terns in lhe message passing statemernls To specify

- send(1, 02 msg,)
an oyece OF sends o message msg to another objecl O ar
he global bme ¢

- recewe{OF, (8 msg,)
an object O recebves wsg Dom another olyect €2 pu the
global time ¢

- suspend {4}
an object M 13 191 2 suspended state

nate
atkacwledgrient and the reqared information, resnechvely

s can b ieploced by ach or repls wiich stand o an

3.1 1 Synchronous message passing

In synchronous message passing, an object which
sends a message to a parlicular object suspends
until its parloer object sends back a message to it
ic, the receiver abject has to send back an ac-
lnowledgimenl or a requested informabon to the
sender object to ensure that iL has received a
message. The sender ohbject can be aclive again
aftor i recewves an acknowledgmenl or the required
information, This way of communication may meet a
deacdlocl siluation when two olyects send messages
to each other simullanecusly, Moreover, il deoes not
fully support the potennal parallelism because an
object has {o suspend afier sendmg a message until
it reccives a message [12]. Rules [or svncnonous

message passing are defined as [ollows

® send{Q1L,Bmsgi’) — & receivel O2 (1, msg.t)
N suspend(O! N ¢ > ¢

remarlst When an object O sends a messdEe msg Lo
anothor objecl OF, F wall recorve 10oal time ¢ oan O
suspends [or meantime,

* receive(Ol _msg.t) N recefvel Ol _msg'tl — msg
= msg’

remark) If O recerves iwo messages al the same bime.
these two shoudd be |he same messages, 1e. (Y cannot

accepl Lwo different messages simullenecustv

o receive{OL,O2msgt) — Oisend(O Zack,t’) U
send(O,.Qf replyv,t’)) N " > ¢

remarls) Tf O tecetves a message from O, then OF will
eventually send baclk an acknowledgment or the requested
miormation to 02,

e suspend(O1) N {(recewe (O _ady,_} \J (receme
(O._reply._}) —> qsuspend(O1))

remark) If O 15 1n a suspended state, 1L resumnes cxecubion
afier receiving an acknowledgment or a reply [rom another
object. ¢, belore 1if reccives a messagc Il remans

suspendled.
8 send/O1, 02 ack.t) —> (send(O1, 02 replv.t))

remark) ack and rely cannot be sent simui-
leneously.

3.1.2 Asynchronous message passing method

The sender objecl, in asynchronous message
passing, continues 1ts execution wilhout walting the
receiver chject to receive a message but there are
two different cases: The sender does not receive
any message from the reeeiver object and the
sender chject will evenlually recerve the requested
message. The internal behavior of these two are nol
the same as those of synchronous message passing.

Here we explain cach case separately.

m In case of having no renun message

® send(OIOSmsg.t) — <0 recefoel 02,01 msg.t’)
N qfsuspend(O1) N ¢ > ¢
remark) When (F send a message lo GF at ume f, O
cventually receives a message at the lume ¢ bur O wall
nol, ke suspended.

e receive(1,02 msgt) N recewe(QL OZmsg’ L) —
msg = msg’
remark) Two cifforonl messages cannol be aceepted at Lhe
samc time

w In case of having a retwrn message

e send(OI.OZmsgt) — <& receivel02,01,msg.t’)
N qsuspend(Q1))

remark) When O sends a message Lo OF at ume & CZ
cvenlually recerves Lhe message at time ¢© and G/ wdl nol
be suspended,

o repeivel 01,02 msg.t) 1N receivel Q1,02 msg’,t) —

msg = msg’

rematk) Two chfferent messages cannol be accepled ai the
same Ume

® receivel (1.Q2msgtl = O{send(O1,02,repty,t’)}
M t'=ttn

lermak) When € recaves a message msg from OF al the
ume £, M has lo send bacl lhe reruesterl message within

n nme units

Nole Il = predicate m Lthe nght-hand sade of Lhe rule does
not contam any lemporal operator, il is assumcel thal an
operator [15 attached as a prefix

32 Pemn nets speaficaion methed

Petri nets, designed by C.A. Petri [13), have been
widely used as tools for the design of commu-
nication protocols [14] and distribuled/concurrent
compuling systems [15]. The power of modeling a
system wilh Petn nets has been increased by
extension o the onginal Petrt net model There are
two approaches to use of Petri nets n soltware
development. One approach is to view the Petn nel
model as an analysis tool where lhe system pro-
pertics are analyzed and modeled in Petri nets which
then analyzed for such properties as safeness,
boundriess, liveliness, and readabilily A second use
of the Pebn nels in the specification and design is to
use ihem for the entirc specification and design
process, thus requuing the transformation of Petri
nel represchntations inlo systems. A Petri nel is
defined as [ollows butl the detailed explanation of the

Petri nets is nol meluded in this paper.

Delmtion™ A Petri nel 15 a iriple
N = (§TF)
where
i) § and T are disjoml sct of places and
transitions, respectively,
u F U (ST U (T%S) is a relalion between

places and transitions.

We assume that s and I represent the elemenls of
wo seis. S and T. In the net, 5, T and F are

represented by circles. bars and arcs, respectively.

Using the properties of Petri nets, rhe dynamic
behavior of message passing can be specified.
Compared to the previous method, 1 shows the dy-
namic behavior pictorially and easlly to be under-
stood. We assume that two objects communicate
each other by passing messages, 01 and O2
represent a sender object and a receiver object,
respectively. In addilion, we assume that initially
two chjecls are ready to communicate.

The meaning of synchronous message passing is
represented by a set of [Petri nets and given in
Figure 3.1. Assume the lwo objects communicate
each other, the left half of the nel represents the
sender object Ol and lhe right half represents the
receiver object (2. The sequence of movement of
lokens in Petri nets is explained as follows: Imbially,
when Ol and O2 are ready to communicare, the
tokens are placed in the {wo places, t1 and 3, as
<a>». {The place having a token implies the current
execution state). After Ol sends a message, it
becomes an suspended state (s4) and 02 accepls the
message (12 fires) and goes 1o the next state {s6)
as <hb> and <c» Meanwhile Ol waits until il
receives back the information or an acknowledgment:
13 can only [fire when the two places s4 and sD
have lhe tokens, that is, when 02 sends hack a
message to QL, 01 resumes the execution by- firing
t3 as <d> and <c>

9 0P D seP

!
\
o /—sfﬁd sih_ sb Al
[A ey
: L_/ 5
w0 a
I O A
<> b
1 S‘O e
P9 L0
1 e nE A
/ Di’ / 12
/A sé) ~
via e Al] ®‘\ sl J
a L Shu 7—";‘ "
- S i
B 1
1S : e () :

Sot AHAE AAE 28 FE A Ry 2 G 431

3l r‘ SJQ s1 amessa)e - Lh- queus of ths s3nder ob;ecl 01
52 i 2 0 Tussa78.p 1 [H- quaus ol thy sandsr ehjacl D2

i J \ 51 0215 a0y [0 e va - Messagy
“1]{ s Of 15 In the suspendad sl-ta
u =z’\‘ 5-5(7) 53 @ M Uinen me.5ag- 15 n 1ha que mol 21
ra ’L_/' 56 0215 (eaty Ir wxecule by Inlsrprating the message
al 57 0" asady to eam J0a somta slatsment
ofi 025 reaty 1o axaguls sema slarem-nl
) 1 Or et a mas_sgd ta 02
*F D2r-cemes 4 mA. 3q¢
W 01 e-gemss s« message Irom 02
16 0% 5 s back p massaga o

(Fig, 3.1) The synchronous message passing

Asynchronous message passing which does not
receive back any inforrnation from the receiver
object is represented with a Pelri net in Figure
3.2, Initially the places sl and s3 have tolkens
which mean that the two ohjects are ready fo
communicate. When Ol sends a message to OZ,
the transition tl fires and consequently t2 [lires: O2
has teceived a message [rom Q1 Alter that Ol
and O2 execute in parallel independently Compared
1o other cases, the Pein nel for thiz case is much

simple.

O .
s1

8}

{F1g. 32} The asynchronous message passing
without returning infermation

The meaning of asynchronous message passing
which requires to recefve back an Informabon or
acknowledgement from the recewver object is given
in Figure 33. The execulion patlem of (s
statement is very simular to lhat ol synchronous
message passing expecl that the sender object (01
does nol need to be suspended until it receives hack
a message. However, Ol eventually reczives back
the information Fom O2, lhat is, any of fransion
(13, t5, 7, .} can fire ab some ume but it does not
affect on the executlon of lhe excculion of the
object O

132 dZEENeI=E =82X Hrd Mo=(0005

51

52

(Fig. 3.3) The asynchronous message passing
with returning information

4, Conclusion

One of important concern during the specification
and design phase of dismbuled object-orienied system
is how to specify their commumcation palterns
approprialely. Two specification methods for messapes
passing have introduced. Cme is the temporal-logic
specification method which can specily the different
pattern of communcalion by introducing a sel of
rules. This metheds enables fo define the underlying
mechamsm which can be interpreted as consbraints.
A set of primitive predicates is pre-delined for this
methods and temporal logic like [ormulae, rules, [or
each messages passmg method are demved The
Petri net methods helps to specify graphically the
dynamic behavior of communication patterns using
the properties of Petri nels, Use of Detn nets
software development 15 increased.

In the future. we will extend lhese specilicabon
methods to be applied o the entire system spec-
ilication of distributed object-oriented systems. Fur-
thermore, since there seem fo exist similar properties
i temporal logic expression and Petri nets, the
relationship helween temporal logic expression and

Petm nels will be investigated

References

[1] HE Bal, “Programmg Languages [or Distributed
Computing System.” ACM Computing Surveys,
Vol 21, No.3, Sepl, 1989, pp261-322

[2] A, Yonczawa and M. Tokore, (ed) Ohject-
Oriented Concwrrent Programming”. The MIT
press. Cambridge. MA. 1937

[3] G. Booch, “"Obijccl-Oricnted Development,” [EEE
Trans. on Soft Eng., SE-122 Teb. 1986, ppZll-

o1

[4] G. Booch, ‘Soliware Engineering with ADA’
(2nd eds)), The Benjamin/Cummings, Redwood
aty, CA, 1991

[5] CAR Hoare, ‘Communicating Scquential Pro-
cesses’. Prenbce-Hall Int, 1985

[6] A Yonezawa (ed), 'ABCL An Object-Onented
Concurrent Syslem’, The MIT DPress, Cambridge,
MA, 1990,

[71 A Pnuel, “The Temporal Logic of Concurrent
Programs.” Theorctical Computer Science, Vol13,
1981, pp.dh-60

[8] S Lee and D.L. Carver, “Specification of Dis-
iribuled Swsiems with Object-Based Speci-
ficajon Language. DOSL,” the Techmical Report,
Lowsiana State University, July 1992,

[91 S Lee, "A Formal Methodology [or the Speci-
ication of Distnbuted Systems [rom an Object
Perspective’. Ph D Dissertation, Louisiana Stale
University, 1992,

[10} B Banicqbal, H Bannger and A. Pnucdl {eds.),
“Temparal Tagic n Specification,” LNCS, Vol.398,
Springer Verlag, 15939,

[111 H DBarnnger, “Usmg Temporal Logic in rhe
Compositional Specitication of Concurrent Sys-
tems,” Unversaty of Manchester. TR UMCS-96-
10-1, 1985,

[12] A. Corradi, and L Leonard, “Parallelism in

IEEE
1990 Int'l Conflerence on Compuler Languages,
14990.

{13] €. Peln,
Disscrtation, University
Getmany, 1962,

[14] S.1. Song, ‘The Modehng, Analysis, and Design
of Distributed
cation, Department of Electrical Frgmeenng and

Objcct-Orented. Programmung Languages.”

Ph1»
West

‘Kommuniliationmit Aulomert),

of Donn, Bomn,

Systems DBased on Communi—

Compuler Sciences, CC Berkeley, 1988,

[15] J.L. Peierson, Peiri Net Theory and the Mo~
delmg ol Systems, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1981,

1983%l

1989

19924

198333 ~ 19861 AU == (5

e-mail ©

M 2ol pE T 433
Ol ADF l:H

shlee@anseo.dankook.ac lr

gEa 7] A T

i

Bigh

"= Lovisiana Slate Uni-
vorsity A Aras (A A1)
nj= Lowsiana Staie Uni

versity A EEHEAE)

Rl

19921 ~ 19033 S AalEale, dhda e

1953 ~

A Kol A M| A sk 2dd

=] ==

2, B Y2,

WAl wE g AAAE 2

Erou e akA

EIETER EIES

