An Efficient Distributed Algorithm to Solve Breadth-First spanning Tree Updating Problem

너비 우선 신장 트리 갱신문제를 위한 분산알고리즘

  • 박정호 (선문대학교 컴퓨터정보학부) ;
  • 박윤용 (선문대학교 컴퓨터정보학부) ;
  • 황석형 (선문대학교 컴퓨터정보학부)
  • Published : 2000.05.01

Abstract

Consider the problem to updata breadth-First Spanning Tree in response to topology change of the network. The paper proposes an efficient distributed algorithm that solves such a problem after several processors and links are added and deleted. Its message complexity and its ideal-time complexity are O(p√q+q+a+n') respectively, where n' is the number fo processors in the network after the topology change, a is the number of added links, p is the total number of links in the biconnected component (of the network before the topology change) including the detected links or added links, and q is the total number of processors in the biconnected component (of the network before the topology change) including the deleted links or added links, and q is the total number of processors in the biconnected component including the deleted links or added links.

너비 우선 선정 트리기 이미 구성되어 있는 비동기식 네트워크상에서 네트워크 형상이 빈힐 경우 이로인해 구성되어 있던 너비 우선 선정 트리를 갱신해야 하는 경우가 발생한다. 본 논문에서는 이러한 경우 너비 우선 신장 트리를 효율적으로 갱신하는 메시지 복잡도와 이상시간 복잡도 모두 O($p\sqrt{q}$.q.a.n')인 분산 알고리즘을 제안한다. 여기서, a는 추가 링크의 수, n'는 네트워크의 토폴로지가 변한후의 네트워크상에 존재하는 노드수를 각각 나타낸다. 그리고 p는 삭제 또는 추가 링크를 가진 이중결합요소에 속하는 전체 노드 수를 나타내며, q는 삭제 또는 추가 링크를 가진 이중 결합요소에 속하는 전체 링크수를 나타낸다.

Keywords

References

  1. B. Awerbuch, 'Complexity of network synchronization,' Journal of ACM, Vol.32, No.4, pp.804-823(Oct. 1985) https://doi.org/10.1145/4221.4227
  2. B. Awerbuch and R.G.Gallager, 'A new distributed algorithm to find breadth first search trees,' IEEE Trans. on Information Theory, Vol.IT-33, No.3, pp. 315-322(1987) https://doi.org/10.1109/TIT.1987.1057314
  3. B. Awerbuch, 'Distributed shortest paths algorithm,' Proc. of 21st Symposium on Theory of Computing, pp.490-500(1980)
  4. M. Ahuja and Y.Zhu, 'An efficient distributed algorithms for finding articulation points, bridges and biconnected components in asynchronous network,' In Porc. 9th Conference on Foundations of Software Technology and Theoretical Computer Science (LNCS 405), pp.99-108(1989)
  5. T.H. Carmen, C.E.Lerserson and R.L.Rivest, 'Introduction to Algorithms,' The MIT Press(1990)
  6. T.Kameda and M.Yamashita, 'Distributed Algorithms,' Kindai-Kagaku-sya(1994)
  7. J. Park, T.Masuzawa, K.Hagihara and N.Tokura, 'An efficient distributed algorithm for breadth first spanning tree problem,' Journal of IEICE(D), Vol. J71-D, No.7, pp.1576-1188(1988)
  8. J. Park and Y. Park, 'An Algorithm Solving the Biconnected-components Reconstruction Problem,' Journal of KIPS, Vol.5, No.10, pp.2513-2520(1998)
  9. B. Swarninathan and K.J.Goldman, 'An incremental distributed algorithm for computing biconnected components,' Proc. 8th International Workshop on Distributed Algorithms(LNCS 857), pp.238-252(1994)