Selective Volume Rendering Using Global Shape Information

전역적 형태정보를 이용한 선택적 볼륨렌더링

  • Hong, Helen (Dept.of Computer, Graduate School of Ewah Wonan's University) ;
  • Kim, Myoung-Hee (Dept.of Computer, Ewah Wonan's University)
  • 홍헬렌 (이화여자대학교 대학원 컴퓨터학과) ;
  • 김명희 (이화여자대학교 컴퓨터학과)
  • Published : 2000.10.01

Abstract

In this paper,we propose a novel technoque of improving volume rendering quality and speed by integrating volume data and global shape information together. The selective volume rendering method is to generate distance transformed volume using a distance transform to determine the minimum distance to the neaest intercsting part and then render it. The shape information prevents from object occlusions come from similar intensity of each object. Thus it provides effective visual results that enable to get a clear understanding of complex structures. We show the results of selective volume rendering method for left ventricle and right ventricle ans well as the results of selective sampling methods depending on the interpolation from EBCT cardiac images. Our method offers an accelerated technique to accurately visuahze the surfaces of devined objects segmented from the volume.

본 논문에서는 볼륨데이터와 전역적 형태정보를 이용하여 볼륨렌더링의 질적측면과 속도측면에서 개선할 수 있는 선택적 볼륨렌더링방법을 제안한다. 선택적 볼륨렌더링방법은 관심부위를 구성하는 외곽선으로부터 최소거리를 결정하는 거리변환을 통하여 거리변환볼륨을 생성하고 이를 렌더링하는 방법으로 형태정보를 이용함으로써 서로 다른 객체들간에 비슷한 명암도로 인해 동일 객체로 인식되는 것을 방지하고, 복잡한 형태를 효과적으로 나타낼 수 있다. 실험결과로는 EBCT 심장데이터에 선택적 볼륨렌더링방법을 적용하여 좌심실, 우심실 렌더링 결과영상과 함께 보간법에 따른 선택적 샘플링 방법 적용결과를 제시한다. 본 제안방법은 볼륨데이터로부터 얻은 형태정보로부터 관심객체 표면을 정확하고 빠르게 가시화할 수 있다.

Keywords

References

  1. Kaufman, A, Cohen D., Yagel, R., 'Volume Graphics,' IEEE Computer, Vol.26, No.7, pp.51-64, 1994 https://doi.org/10.1109/MC.1993.274942
  2. Vandermuelen, D., Plets, P., Ramakers, S., et al, 'Integrated Visualization of Brain Anatomy and Cerebral Blood Vessels,' ACM workshop on Volume visualization, pp.39-46, 1992 https://doi.org/10.1145/147130.147146
  3. Sakas, G, Schreyer, L.A., Grimm, M., 'Case Study, Preprocessing, Segmenting and Volume Rendering 3D Ultrasonic Data,' IEEE Trans. on Computer Graphics and Applications, Vol.15, No.4, pp.47-54, 1995 https://doi.org/10.1109/38.391490
  4. Cai, W, Sakas, G., Data Intermixing and Multi-Volume Rendering, Eurographics, Vol18, No.3, 1999 https://doi.org/10.1111/1467-8659.00356
  5. Levoy, M., Display of Surfaces from Volume Data, IEEE Computer Graphics & Applications, Vol.8, No.3, pp 29-37, 1988 https://doi.org/10.1109/38.511
  6. Hong, H. Kim, M.H. 'Direct Multi Volume Rendering Method or Cardiac Volume Data Sets,' Proc. of the 4th Germany-Korea Joint Workshop on Advanced Medical Image Processing, Darmstadt-Heidelberg, Germany, 1999
  7. Sakas, G., 'Interactive Volume Rendering of Large Fields,' Visual Computer, Vol.9, pp.425-438, 1993 https://doi.org/10.1007/BF01888717
  8. Levoy, M., 'Efficient Ray Tracing of Volume Data,' ACM Trans. on Graphics, Vol.9, No3, pp.245-261, 1990 https://doi.org/10.1145/78964.78965
  9. Sun-Young P., Myoung-Hee K., Stefan, G., 'Segmentation of Medical Images by Application of an Improved Active Contour Model,' Proceedings of 1998 Computer Assisted Radiology, 1998
  10. Verwer, Ben. J H., Distance Transformations-Metrics, Algorithms and Applications, PhD thesis, Delft University of Technology, 1991
  11. Herman, G.T, Zheng, J., Bucholtz, C.A., 'Shape-based Interpolation,' IEEE Computer Graphics and Application, Vol.12. No.1, pp65-71, 1992 https://doi.org/10.1109/38.135915
  12. Borgefors, G, 'Distance Transformation in Digital Images,' Computer Vision, Graphics, and Image Processing, Vol 34, No.3, pp,344-371, 1986 https://doi.org/10.1016/S0734-189X(86)80047-0
  13. Hearn, D., Baker, M.P., 'Computer Graphics : C version', Prentice Hall