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SADDLE POINTS OF VECTOR-VALUED
FUNCTIONS IN TOPOLOGICAL VECTOR SPACES

IN-Sook Kim

ABSTRACT. We give a new saddle point theorem for vector-valued
functions on an admissible compact convex set in a topological vec-
tor space under weak condition that is the semicontinuity of two
function scalarization and acyclicity of the involved sets. As appli-
cation, we obtain the minimax theorem.

1. Introduction

In 1983, Nieuwenhuis [10] introduced the concept of saddle point
for vector-valued functions in finite dimensional spaces. Tanaka [16—
18} obtained various existence results on cone saddle points of vector-
valued functions in infinite dimensional spaces. Recently, some exis-
tence theorems of cone saddle points on H-spaces are proved in [2].

In this paper, we first provide sufficient conditions for a multimap
to be upper semicontinuous and then give a new saddle point theo-
rem for vector-valued functions in topological vector spaces under the
semicontinuity of scalarized functions whose proof is based on a fixed
point theorem [11] due to Park instead of Fan-Glicksberg’s fixed point
theorem [5] for locally convex topological vector spaces, where the ad-
missibility in the sense of Klee [7] plays a fundamental role. The main
result is a generalization of [6]. Moreover, it is remarkable that con-
vexity of the involved sets in the main theorem can be replaced by
acyclicity. As application, we present the minimax theorem which re-
duces to von Neumann’s minimax theorem [9]. For minimax problems
relative to vector-valued functions, see [2-4, 14].
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A multimap T : X — Y is a function from a set X into the set of
all nonempty subsets of a set Y. For topological spaces X and Y, a
multimap T : X — Y is said to be upper semicontinuous if the set
{r € X : Tz C A} is open in X for each open set A in Y. A multimap
T:X —Y is said to be compact if the set T'(X) is relatively compact
in Y; and closed if T has a closed graph.

A function f : X — R on a topological space X is said to be lower
semicontinuous if the set {x € X : f(z) > a} is open in X for every
real number a; and upper semicontinuous if the set {z € X : f(z) < a}
is open in X for every real number a.

Let Z be a real topological vector space with a partial order <; that
is, a reflexive transitive binary relation. Let A be a nonempty set in
Z. A point ag € A is said to be a minimal point of A if for any a € A,
a < ag implies a = ap. It is said to be a mazimal point of A if for any
a € A, ap < a implies @ = ag. The set of minimal [resp. maximall
points of A is denoted by min A [resp. max A).

Let f be a vector-valued function from a product X x Y to Z. For
z € X andy € Y set f(X,y) = {f(z,y) : z € X} and f(z,Y) :=
{f(z,y) : y € Y}. A point (zo,y0) € X xY is said to be a saddle point
of f on X x Y if f(zo,y0) € min f(X,yo) Nmax f(xo,Y).

Let f, fi and f> be real-valued functions defined on the Cartesian
product X x Y of sets X and Y. A point (zo,yo) is said to be a
semi-saddle point of (f1, f2) on X x Y if fi(zo,y0) < fi(z,v0) and
f2(z0,y) < fa(zo,y0) for all z € X and y € Y. It is said to be a saddle
point of f on X x Y if f(zo,y) < f(Zo,y0) < f(z,y0) for all z € X and
y €Y. See [17].

Let Z be a real topological vector space with a partial order <.
A real-valued function g : Z — R is said to be strictly monotone if
g(a) < g(b) for a < b, where a < b means a < b and a # b. See [8].

A nonempty subset X of a topological vector space E is said to be
admissible (in the sense of Klee [7]) provided that, for every compact
subset K of X and every neighborhood V of the origin 0 in F, there
exists a continuous function h : K — X such that z — h(z) € V for all
z € K and h(K) is contained in a finite dimensional subspace L of E.

It is well-known that every nonempty convex subset of a locally
convex topological vector space is admissible. The spaces LP(0, 1) for
0 < p < 1and S(0,1) are admissible topological vector spaces, see [12,
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13).

A nonempty topological space is acyclic if all of its reduced Cech
homology groups over rationals vanish. In particular, any nonempty
convex or star-shaped subset of a topological vector space is acyclic.

2. Saddle points of vector-valued functions

We give a new saddle point theorem for vector-valued functions in
topological vector spaces under weaker conditions than known results.
To this end, the following observation is necessary. See [1].

LEMMA 2.1. Let X and Y be Hausdorff topological spaces and f :
X xY — R a real-valued function on the product space X xY. Then
the following statements hold:

(1) If X is compact and if f(-,y) is lower semicontinuous on X for
each y € Y and f(z,-) is upper semicontinuous on Y for each
z € X, then a function h : Y — R defined by

h(y) := min flz,y) foryeyY

is upper semicontinuous.

(2) IfY is compact and if f(z,-) is upper semicontinuous on 'Y for
each x € X and f(-,y) is lower semicontinuous on X for each
y €Y, then a function k : X — R defined by

k(z) = X
(z) max (z,y) forz €

is lower semicontinuous.
(3) If f is lower semicontinuous on X x Y and f(z,-) is upper

semicontinuous on Y for each x € X and if X is compact, then
a multimap T : Y — X defined by

Ty:={zcX: f(z,y) =min f(z,y)} foryeY

is upper semicontinuous.
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(4) If f is upper semicontinuous on X x Y and f(:,y) is lower
semicontinuous on X for each y € Y and if Y is compact, then
a multimap S : X — Y defined by

Sz:={yeY: f(z,y) =max f(z,y)} forzxeX
yey

is upper semicontinuous.

Proof. (1) The function h : Y — R is well-defined since f(-,y) is
lower semicontinuous on the compact set X. We claim that h is upper
semicontinuous on Y. Let yo € Y and r € R such that h(yo) < 7. Then
there is a point xo € X such that f(zo,0) = h(yo) < r. Since f(zo,")
is upper semicontinuous on Y, there exists a neighborhood V of yp in
Y such that f(zo,y) < r for all y € V and so h(y) < f(zxo,y) < r for
all y € V. Hence h is upper semicontinuous on Y.

(2) A similar argument establishes the result for the lower semicon-
tinuity of k.

(3) We show that T has a closed graph. Let (%a,ya) be a net
in the graph Gr(T) of T such that (Za,Ya) — (zo,y0). Since f is
lower semicontinuous on X x Y, (Za,¥a) € Gr(T), and h is upper
semicontinuous on Y, we have

f(zo,y0) < liminf f(Za,Yo) < limsup h(ya)
a «

< h(yo) < f(zo,Yo)

and hence f(zo,%) = h(yo); that is, (o,%0) € Gr(T). Thus T has
closed graph. Since X is compact, it is clear that T' is upper semicon-
tinuous (see [1}).

(4) As in the proof of (3), we can check that S has a closed graph
and hence 9 is upper semicontinuous. This completes the proof. [

The following lemma provides a criterion for the existence of saddle
points. For loose saddle points of multimaps, see [6, Lemma 2.1]. For
cone saddle points of vector-valued functions, see [17, Theorem 2.4].
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LEMMA 2.2. Let Z be a real topological vector space with a partial
order < and g1, g2 : Z — R strictly monotone functions. If f : X XY —
Z is a vector-valued function on the Cartesian product X x Y, then
any semi-saddle point of (g1 0 f,g20 f) on X x Y is also a saddle point
of fon X xY.

Proof. Let (x0,y0) € X X Y be a semi-saddle point of (g1 o f,g20 f)
on X xY. Then g1 o f(zo,90) < g1 © f(x,90) and g2 o f(zo,y) <
g2 © f(zo,y0) for all z € X and y € Y. Since ¢g; and g2 are strictly
monotone, it follows that f(zo,yo) € min f(X,yo) N max f(zo,Y). In
fact, if f(zo,yo) is not a minimal point of f(X,yo), then f(w,yo) <
f(zo,yo) for some w € X and hence by the strict monotonicity, g; o
f(w,y0) < g1 o f(zo,yo) which contradicts the above relation that
g1 0 f(zo,y0) < g1 0 f(z,yo) for all z € X. Similarly, we obtain that
f(zo,y0) € max f(x0,Y). Therefore, (zo,yo0) is a saddle point of f on
X x Y. This completes the proof. O

Our main tool is the following particular form of a fixed point the-
orem [11, Corollary 1.1] recently due to Park.

LEMMA 2.3. Let X be an admissible convex subset of a Hausdorff
topological vector space E and A : X — X a compact closed multimap
with nonempty acyclic values. Then A has a fixed point.

Now we can obtain our main result which is a generalization of [6,
Theorem 3.2]. For cone saddle points on H-spaces, see [2, Theorem
2.3].

THEOREM 2.4. Let X and Y be nonempty admissible compact
convex sets in two Hausdorff topological vector spaces E and F re-
spectively, and Z a partially ordered topological vector space. Let
f: X xY — Z be a vector-valued function defined on the product
space X x Y. Suppose that there exist strictly monotone functions
91,92 : Z — R such that

(1) g10f is lower semicontinuous on X XY and g, o f(z,) is upper
semicontinuous on Y for each x € X;

(2) g20 f is upper semicontinuous on X x Y and gz o f(-,y) is lower
semicontinuous on X for eachy €Y
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(3) {x€ X :g10 f(z,y) = mingex g1 0 f(z,y)} is acyclic for each

y €Y; and
(4) {y €Y : g2 0 f(z,y) = maxyey g2 © f(z,y)} is acyclic for each
z e X.

Then f has a saddle point on X x Y.

Proof. Consider three multimaps

T:Y =X, Ty:={z€X:giof(zy)=mingof(zy)}
S:X Y, S:L‘::{yEY:gzof(m,y):rgleai)/cggof(ac,y)}
A: XxY —-oXxY, Azy) = Ty,Sx).

For each y € Y, since g; o f(-,y) is lower semicontinuous on the compact
set X, Ty is nonempty and closed. S also has nonempty closed values.
By Lemma 2.1, T and S are upper semicontinuous with nonempty
closed values. Hence A is upper semicontinuous and has nonempty
closed values. Therefore, A is a compact closed multimap. From (3)
and (4), it follows that T and S have acyclic values. By Lemma 2.3,
there is a point (xo,v0) € X x Y such that zo € Tyo and yo € Sxo.
Thus, (o, o) is a semi-saddle point of (g1 © f,g20 f) on X x Y. Since
g1 and gy are strictly monotone, by Lemma 2.2, (xo,%o) is a saddle
point of f. This completes the proof. O

COROLLARY 2.5. Let X andY be nonempty compact convex sets in
two HausdorfF Iocally convex topological vector spaces respectively, and
Z a partially ordered topological vector space. Let f : X XY — Z be a
continuous vector-valued function on the product space X xY . Suppose
that there exists a continuous strictly monotone function g : Z — R
such that

(1) foreachy €Y, go f(-,y) is quasiconvex on X; and
(2) for each z € X, go f(x,-) is quasiconcave on Y.

Then f has a saddle point on X X Y.

REMARK. If f is a continuous real-valued function and g is the iden-
tity map, then Corollary 2.5 reduces to [15, Theorem 4.1], where the
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concept of an escaping sequence is required instead of the compactness
of XandY.

Finally we show that the minimax theorem can be deduced from
our saddle point theorem.

THEOREM 2.6. Let X andY be nonempty admissible compact con-
vex sets in two Hausdorff topological vector spaces E and F respec-
tively. Let f : X xY — R be a continuous real-valued function defined
on the product space X x Y such that

(1) {x € X : f(z,y) = mingex f(z,y)} is acyclic for each y € Y;
and
(2) {y €Y : f(z,y) = maxyey f(z,y)} is acyclic for each z € X.
Then we have the minimax theorem

ggg(lr&a;cf(w,y) = max min f(z,y).

Proof. Theorem 2.4 implies that there exists a point (zg, y0) € X XY
such that

max f(z0,y) = f(z0,0) = min (@, y0)-

By Lemma 2.1, maxycy f(-,y) is lower semicontinuous on the compact
set X and mingex f(z,-) is upper semicontinuous on the compact set
Y. Hence we conclude that

. - o < : _
min max f(z,y) < max f(zo,y) = min f(z,y0) < maxmin f(z,y)

The inequality maxyecy mingex f(z,y) < mingex maxyey f(z,y) is
obvious. This completes the proof. |
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