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BEHAVIOR OF SOLUTIONS TO
A PARABOLIC-ELLIPTIC SYSTEM
MODELLING CHEMOTAXIS

TOSHITAKA NAGAI

ABSTRACT. A parabolic-elliptic system modelling chemotaxis is anal-
ysed. We study the behavior of solutions, especially the finite-time

blowup of nonradial solutions, to the parabolic-elliptic system on

R*(n > 2).

1. Introduction

In this article, we consider the behavior of solutions, especially the
finite-time blowup of solutions, to the following parabolic-elliptic system
on R*(n > 2):

u=V+(Vu—xuVv) in R? t>0,
(P) 0=Av—v+au in R ¢>0,
u(-, 0) = uo on R,
where a, x are positive constants. Following [7], we always assume that
u > 0on R*, wuy€ LY(RY) N WP(RY) (p > n).
Under the condition on wug, it was shown in [7] that there exists some
T > 0 such that (P) has a unique nonnegative solution (u,v) satisfying
(i) w e C((0,T) : WH(R™) N C((0, T : LA(R™)),
u(t) € W*(R") for 0 <t <T,
(i) v € C([0,T] : W*P(R™)).
Moreover, it holds that
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(i) fenu(z,t)de = [p,ug(z)dz for 0 <t < T,

(ii) (u,v) is smooth on R™ x (0,T) and a classical solution of (P),
(iii) if up # 0, then u(z,t) > 0, v(z,t) > 0 on R" x (0,7,
(iv) if the maximal existence time T,,,, of (u,v) is finite, then

lim sup [|u(t)||z=®e) = +oo,

t—Tnax

by which we mean that (u,v) blows up in finite time.

The system (P) is a simplified version of a parabolic system called the
Keller-Segel model, proposed by Keller and Segel[15] in 1970, which is
a mathematical model describing aggregation phenomena of organisms
due to chemotazis, i.e., the directed movement of organisms in response
to the gradient of a chemical attractant.

One of interesting phenomena to the Keller-Segel model is the finite-
time blowup of solutions exhibiting formation of singularities, which was
conjectured in [4, 5, 21]. Recently, much attention has been paid to
blowup problems for the Keller-Segel model on bounded domains €2 in
R*(n > 2) with smooth boundary, subject to homogeneous Neumann
boundary conditions. As far as we know, in [14] they first showed the
finite-time blowup of radial solutions to another parabolic-elliptic system
of the Keller-Segel model on a disk  in R?, under the condition that
Jq uo dx is large. In [16] he considered (P) on a ball 2, and showed that
radial solutions blow up in finite time if n > 2 and [, uo(z)|z|" dz is
sufficiently small, under the condition [,uodz > 81/(ax) only for the
case n = 2. For nonradial cases on two-dimensional bounded domains,
we refer to recent results in [17]. In [9, 10, 11], they showed the existence
of radial solutions on a disk in R? exhibiting §-function singularities
at the origin and at the blowup time. For further study in three or
more space dimensions, see [12, 13]. In recent results [19, 23], it is
shown that finite-time blowup leads to the formation of singularities.
We refer to [1, 2, 3, 18, 22] for results related to blowup problems, and
to [2, 6, 7, 8, 16, 20, 25| for local or global existence.

It was shown in [7, Theorem 3.1] that nonnegative solutions of (P)
on R? exists globally in time under the condition g, updz < 8m/(ax)
by using symmetrization techniques, and in Theorem 4.1 and Corol-
lary 4.1 that radial solutions on R*(n > 2) blow up in finite time if
f]R" up(z)|z|* dz is sufficiently small, under the condition fR,, ugdr >
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8m/(ax) only for the case n = 2. In this article, we show the finite-
time blowup of solutions to (P) on R*(n > 2) without assuming the
radial condition on initial functions uy. Our result is the following

THEOREM 1. Let (u,v) be the solution of (P) corresponding to the
initial function uy, and ¢ € R™. Then (u,v) blows up in finite time,
provided that

(i) in the case n = 2, [p,uodz > 8m/(ax) and [p, uo(z)|z — g d

satisfies

1 81\ 2 -1
— 2 — — —
(1) /1122 ugp(z)|lz — q|° dr < 1 </)R2 up dz 04X> (/Rz Up dx) ,

(ii) in the case n > 3, [p. uo(z)|z — q|" dz satisfies

200 =) wode) ([ wi@le —apaa) "

@  vas([ we)""([ wlk-dra)”
<SP ([ wee)

where
23—2n,/.r(1—n)/2 00
b= e | etetas
() Jo

In order to prove Theorem 1, we employ the method of moments
which is used in [1, 3, 16] to prove the finite-time blowup of solutions
to parabolic-elliptic systems. In the case n = 2, from Theorem 1 and
(7, Theorem 3.1] we conclude that 8m/(a) is the critical number on
whether solutions of (P) on R? exist globally in time.

2. Fundamental solution of —A +1 on R

Let n > 2,1 < p < o0, and given f € LP(R™) consider the problem
—Aw+w= fin R™

The solution w is represented as

“w(z) = /R Gz —y)f(y) dy,
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where G(z) is the fundamental solution of —A + 1 on R". G(z) is the

Bessel function which can be expressed as

0 2\ (n-3)/2
(3) G(z) = ype™ ™ / e~lels (s + %) ds
0
with the constant ~y, given by
—n n—171"1
() 7= (@m)iefor(Bo) )

For (3), see a book of Stein {24, Ch. 5, Sec. 6.5].

LEMMA 1. It holds that for z,y € R*(z # y),

(5) (|21 = [y"*y) - VG(z — y) < —Bne™",
where
(6) /Bn = 2(7_3”)/2,7n/ 6_€§n—2 df

0

and 1, is the one given by (4).

Proof. Differentiating (3) in z gives that for z # 0,
ol 2 (n-3)/2
VG(z) = _%ﬁe—lzl / el (1 +s) (s + s_) ds,
|z| 0 2
from which it follows that

(lz|" %z — [y|"%y) - VG(z — y)

™ el =l y) @ =) ey
|z —y
where
o 2\ (n—3)/2
I :/ e'|z—y|s(1 +S) <S+ 3_) ds.
0 2

By the following equalities and inequality
20+ (z —y) = (|2 — lyl) + |z — oI,
2y (z —y) = (|2 = [yl) = |z — oI,
2|2+ y*? > 25 e~y
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we observe that
(lz]"%z — y|"?y) - (z — y)

1 n-2 n-2 2, 1 n—-2 n—2 2 2
9 = (el "o =yl + 5 (1" = ly") (2l - [yl

1 n— n—
> (el + lyP e — o

> 2"z —y[™,
Using the inequality
(1+s) (S + S;>(n—3)/2 > 26-m/2gn=2 for s> 0,
we have
[ > o2 /oo olo-ls gn-2 g
9) ’

— 2(3—n)/2’$ _ yll—n /oo 6_§§n_2 df
0
Then, putting together (7)-(9) yields that
(=" %z — [y|"%y) - G(z — y)
S _,yn2(7—3n)/2e—]x—y| /00 e—§€n—2 df
0
= —B,e eyl

Hence, the proof is complete. O

3. Proof of Theorem 1

In order to prove Theorem 1, we begin with the following lemma,
which is shown by Hélder’s inequality.

LEMMA 2 (The moment inequality). Let 0 < p; < py < oo and
|z|P2f € LY(R™). Then,

| 1#@lal s
< ([ 1r@1ae)™" ([ 15@isl da)™"™
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The following lemma is a key one to prove Theorem 1.

LEMMA 3. Let (u,v) be the solution of (P) corresponding to the ini-
tial function ug and g be a point in R*. Assume that [, uo(z)|z —
gl"dz < +oo. Then M(t) = [g.u(z,t)lz — g[*dz < 400 for 0 <t <
Tmez, and it holds that

¢
M(t) < M(0) +/ F(M(s))ds for 0 <t < T,
0
where M +— F(M) is the increasing function on [0, c0) defined by

2/n
F(M) = 2n(n —1) ( / o dx) ME=2/n

naxfn / 2
- ( Up da:)
2 \Jpe
(2n—-1)/n
+ naxfy (/ Up dx) M

and 3, is the one given by (6).

Proof. We may assume that g is the origin by the translation z — z—gq.
For m = 1,2,3,... let ¢, be a function in C?([0,00)) such that

1 for r <m,
0<¥m=1, wm(r)z{o for r>m+1

where C is a constant independent of m. Put

M, (t) = /n u(z, t)|z]"m(|z]) dz

Multiply u, = V - (Vu — xuVv) by |z|"m(|z|) and integrate over R".
Integrating by parts gives

d

— M, (t)
(10) dt
:/ ulA(|z|"Ym) dz +x/ uVv - V(|z|"m) dz
n Rn

Noting
V|z|* = n[a:|"‘23:, Alz|* = 2n(n — 1)l:c|"_2
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and using ¢, <0, [¢)| < Ctp, we have
/ ulA(|z["r,) dx
]Rn

< 2n{n — 1)/ u|z|" 2, dz + C/ ulz|™ dz.

<lz|gm+1

(11)

The moment inequality and [, u(x,t)dz = [g. uo(z) dz give us that
/ ul|z|" "y, da
R~

< (o) o)

which together with (11) yields that

/ ul(|z|* ) dz
R
< 2n(n — 1)(/ Up dm) { M (£)}=2/m 4 C’/ ulz|" dz.
n m<jzj<m+1

We next estimate the second integral on the right-hand side of (10):
/ uVv -« V(|z|"t,,) dx
= n/ ulz|"?(z - V)b, dz + / ulz[" Yz - Vo), dz.

n R"

Let T € (0,Tpnez)- Since v € C([0,T] : W%(R")) and WP(R") C
L*®(R™) with continuous inclusion because of p > n, by [¢],| < Ct,, we
observe that for any ¢t € (0,T),

/ ulz|"H(z » Vo), dx

< C”VU“L""(R"X(O,T))/ ulz|" dz.

m<|z|<m+1
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Then, for any t € (0,T) we have
d
— M, (t
o Mm(t)
2/n
<2n(n-—1) (/ up dx) { M, (t)}n=D/n
+ nx/ ul|z|* (2 - Vo), dz

+ C|| Vvl oo (0,7 / ulz|" dz.

m<|z|<m+1

To obtain that the integral [p, u(z,t)|z|" dz is finite, we estimate the
second term on the right-hand side of (12) as follows: for 0 <t < T,

/ u|z|"*(z « V)b, dx
S |IVU“L°°(R"><(O,T))/ u[:c]"_lwmdx
]Rn

1n (n—1)/n
< ||Vl o@nx(0,1) (/ Ug d:c) {M,(t)} .
IRH

2/n
<2n(n-—1) (/ g da:) {Mm(t)}("'Q)/"
1/n
+ X||VUHL°°(Rnx(o,T)) (/m U da:) {Mm(t)}(n—l)/n

+ C IVl zo@rxory + 1) / ujz|" dz.

m<|z|<m+1
By Young’s inequality, it follows from this differential inequality that
d
EMm(t) <CMu(t)+1) for0<t<T,

which implies that M,,(t) < C for 0 <t < T with a positive constant C
depending on T. Letting m — o0, by Fatou’s lemma, we have

M(t):/ weDlzltde < C for 0<t<T,
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which implies that [, u(x,t)|z|" dz is finite for any t € (0, Traz)-

Next, integrating (12) from 0 to ¢ and letting m — oo, we have

M(t) — M(0)
(13) <2n(n—1)(/ uodx 2/ /{M (n=2)/n 4g
+nx/ / ulz|"*(z - Vv) deds.

To estimate the second term on the right-hand side of (13), we use
the following representation of v:

v(z,t) =a [ Gz —y)u(y,t)dy.

R~

Then,

I _—./ u(z, t)|z|" 2z - Vo(z,t) do
=a /" /" u(z, t)uly, t)|z|" 2z - VG(z — y) dydx
=5 [ [ wtetulw 0002 ~ P2 - V6 (o — ) duds,

Here, we used the following symmetry properties of the integral:

/n /nu(x’t)“(y’t)m"'?x - VG(z — y) dydz
- / / w(z, tyuly, t)|y|" "y - VG(z — y) dydz.
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By (5), I is estimated as

I< —O‘zﬂ" / n / ule,uly, e dyda
=_°‘ﬂ" / n / u(e, uly, 1) dydz

aﬂ" // (z,t)uly, t)(1 — e Y) dydar

<- "‘ﬁ"(/ u(z,t)dz)

aﬁ”/ﬂ/n (z,)uly, )z — y| dydz

— _afn (/ uo(x) d:c) + af"u,

I = /R n /IR u(z, tufy, Ol — y| dyda.

Using the moment inequality, we estimate I as follows:

Ir< / / u(z, t)uly, t)(|z| + |y|) dydx

_2(/ dy)(/ xt|x|d:c)
< (/ dy)(/ (2,1) dac)(n_l)/n(/nu(x,t)|x|"dx)1/n

=2 [ woleyas) ™ prayy

Hence,
afn 2
< —
I< 5 (/nuo(x)dx)

(2n-1)/n
+ afa( / u(@)de) (M)}
Putting (14) into (13) yields that

where

(14)

M) — M(0) < /O F(M(s)) de,

which concludes the proof of the lemma. O
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We are now in a position to prove Theorem 1.

Proof of Theorem 1. We prove the theorem by contradiction. Suppose
Tmez = 100, that is, the solution (u,v) exists globally in time. Define
the function H(t) on [0, c0) by

H(t) = M(0) + /0 F(M(s)) ds.

It follows from Lemma 3 that M(t) < H(t) for t > 0. Since F(M(t)) <
F(H(t)) because of the monotonicity of F(M), we have

(15) H'(t) <F(H(t)) for 0<t < oo.
In the case n = 2, since f, = 1/(2),

3 oy 2 ax Y21
F(M)—4/Rzu0dx 27r(/Rzu0dx) +7r(/wu0dx) M=,

2
Note that F(0) = 4 [z, uodr — ax/(Zw)(flR2 ug d:c) < 0 by virtue of

Jgzwodz > 8m/(ax), and F(H(0)) = F(M(0)) < 0 by virtue of (1).
Hence, the differential inequality (15) gives that there is some Ty > 0
such that H(Ty) = 0, i.e., M(Ty) = 0. This is a contradiction to the
positivity of M(t), since u(z,t) > 0 on R? x (0, 00). Hence, Trpar < 00.

In the case n > 3, observe that F(0) < 0 only under the condition
Jgn w0 dz > 0. Since F(M(0)) < 0 by virtue of (2), the same argument
above gives Ti, < 00. Thus, the proof of the theorem is complete. O
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