VARIATIONAL PRINCIPLE FOR QUANTUM UNBOUNDED SPIN SYSTEMS

  • Choi, S.D. (Department of Physics Kyungpook National University) ;
  • Jo, S.G. (Department of Physics Kyungpook National University) ;
  • Kim, H.I. (Kyungpook National University) ;
  • Lee, H.H. (Department of Mathematics Kyungpook National University) ;
  • Yoo, H.J. (Department of Mathematics Kyungpook National University)
  • Published : 2000.07.01

Abstract

We study the variational principle for quantum unbounded spin systems interacting via superstable and regular interactions. We show that the (weak) KMS state constructed via the thermodynamic limit of finite volume Green's functions satisfies the Gibbs variational equality.

Keywords

References

  1. J. Funct. Anal. v.19 Homogeneous random fields and statistical mechanics S. Albeverio;R. Hegh-Krohn
  2. Operator algebras and quantum statistical mechanics v.1 O. Bratteli;D. W. Robinson
  3. Operator algebras and quantum statistical mechanics v.2
  4. de Gruyter Gibbs measures and phase transitions H. O. Georgii
  5. Convexity in the theory of lattice gases R. B. Israel
  6. Z. Wahrscheinlichkeitstheorie verw. Gebiete v.58 Almost sure entropy and the variational principle for random elds H. Kunsch
  7. Commun. Math. Phys. v.50 Statistical mechanics of systems of unbounded spins J. L. Lebowitz;E. Presutti
  8. J. Korean Math. Soc. v.22 no.1 Quantum statistical mechanics of unbounded continuous spin systems Y. M. Park
  9. J. Stat. Phys. v.75 no.1;2 A characterization of Gibbs states of lattice boson systems Y. M. Park and H. J. Yoo,
  10. Random field Lecture Notes in Mathematics C. Preston
  11. Rigorous results Statistical mechanics D. Ruelle
  12. Commun. Math. Phys. v.50 Probability estimates for continuous spin systems
  13. Functional integration and quantum physics B. Simon
  14. The statistical mechanics of lattice gases v.1