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THE NUMBER OF LINEAR SYSTEMS
COMPUTING THE GONALITY

Marc COPPENS

ABSTRACT. Let C be a smooth k-gonal curve of genus g. We study
the number of pencils of degree k on C. In case g > k(k —1)/2
we state a conjecture based on a discussion on plane models for
C. From previous work it is known that if C possesses a large
number of pencils then C has a special plane model. From this
observation the conjectures are split up in two cases: the existence
of some types of plane curves should imply the existence of curves
C with a given number of pencils; the non-existence of plane curves
should imply the non-existence of curves C with some given large
number of pencils. The non-existence part only occurs in the range
k(k—1)/2< g < k(k—1)/2+ [(k—2)/2] if k > 7. In this range we
prove the existence part of the conjecture and we also prove some
non-existence statements. Those result imply the conjecture in that
range for k < 10. The cases k < 6 are handled separately.

1. Introduction

(1.1). In this paper C always denotes a smooth connected complete
curve of genus g over the field C of the complex numbers. Remember
the definition of the gonality of C: there exists a linear system gi but
no linear system g;_, on C. Equivalently, k is the minimal degree
of a covering C — P!. From Brill-Noether Theory it follows that
k < (g + 3)/2. In this paper we investigate the possible number of
linear systems gi on a k-gonal curve.
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In case k = (g+3)/2 (with g being odd) then C' has infinitely many
g; and in case k = (g +2)/2 (w1th g being even) then a general curve
of genus g has exactly = +2),(g )T linear systems g;. Both claims
follow from Brill-Noether Theory. In case k = (g+2)/2 the curve C can

have less than =F +2)"!’é ey linear systems gi. In that case some of

them are limits of at least two different g}, in a family of curves, so they
should be counted with some multiplicity. In this way, if g = 2k — 2
and C has finitely many linear systems gi then the number of gt onC,
counted with suited multiplicities, always is equal to G=F +2)f(! 1 B
Further on we only consider linear systems that have to be counted
with multiplicity 1.

Assume a smooth curve C has two different base point free linear
systems g;: call them g; and go. Take a general element F; € g;. Then
F) + go and F, + g1 are lines in |g; + g2| intersecting at F} + F3. They
span a linear system ggk. This linear system has no base points and
defines a morphism ¢ : C — P2, Let I be the image. If p: C — T' is
not a birational equivalence then there exists a smooth curve C’ (the
normalisation of I'), a non-trivial morphism f : C — C’ of some degree
a > 2 and two linear systems gi, on C’ (call them g; and g3) with
f*(g}) = g (hence k = a.k’). In particular we find no restriction on
g in this case. More general, starting with a curve of some gonality
k' having many linear systems gj., and using coverings of some degree
a > 2 we find k = ak’-gonal curves of arbitrary large genus having
many linear systems gi. Further on we are going to exclude such
possibility. If ¢ : C — I is a birational morphism then C is birational
equivalent to a plane curve of degree 2k having at least 2 singular
points of multiplicity k¥ (namely the image on I of the points in F; and
in F). This implies g < (k — 1)2. So in this case we have a restriction
ong.

(1.2) To make the second restriction more precise we introduce the
following definition.

DEFINITION. Two base point free linear systems g; on C (call them
g1 and go) are called dependent if there exists a non-trivial morphlsm
f : C — C' of some degree a > 2 and two linear systems gi on
C’ (call them g¢; and g5) such that f*(g;') = g;- Otherwise they are
called independent. If g1, - - - , gm are m different base point free linear
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systems g; on C then they are called mutually independent if for each
1 <i < j < m the linear systems g; and g; are independent.

(1.3) Now we make the first restriction more precise. A base point
free linear system g; on C (call it g) is said to be the limit of two
different linear systems gi in a family of curves if there exists a 1-
parameter family of curves w : C — A(A = {z € C : |z| < 1} with
771(0) = C and two families G; and G2 of linear systems g} on this
family (see [2] for the definition) such that (G1)o = (G2)o = g on
C = 77 10) and (G1): # (G2); on C; = w~1(t) for t # 0. In this
case we should count g with some multiplicity. In [7] it is proved that
g is the limit of two different g} in a family of curves if and only if
dim(|2g]) > 3.

DEFINITION. We say that g (a base point free g; on C) is of type I
if dim(|2g|) = 2 (i.e., g is not the limit of two different gi in a family
of curves, hence g is counted with multiplicity 1).

REMARK: The linear system g corresponds to some point z in W} C
J(C). Then g is of type I if and only if z is an isolated point of W}
and as a scheme W} is reduced at z.

(1.4) Let M, be the coarse moduli space of smooth curves of genus
g. Let Mg ; be the k-gonal locus.

DEFINITION. Let m € Z>;. Then Mg x(m) is the set of k-gonal
curves C having exactly m linear systems gi. Moreover those linear
systems g} are mutually independent and each one is of type L

The precise question considered in this paper is the following: given
g; k (with g > 2k —2) determine all values m € Z>, such that My x(m)
is not empty.

(1.5) As already noted, in case g = 2k — 2, then M, g(m) is not
empty if and only if m = = +2ﬁ(!g_ DT So, from now on we assume
g>2k—1.

A general element C of M, ; has a unique g} and it is of type I,
hence M, (1) is not empty for g > 2k — 1. This follows from [3] and
[18]. Also M, x(2) is not empty if and only if 2k — 1 < g < (k — 1)?
and (g; k) # (7;4). This is proved in {12].
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In Section 2, using plane curves, we obtain elements in Mg r(m)
for some values of g; k and m. In case g > k(k — 1)/2 there is a good
upper bound on m for the condition My x(m) # 0. This bound is due to
Accola. In section 3, using this bound and the examples from Section
2, we state a conjecture concerning the non-emptiness of M, x(m) in
the range g > k(k — 1)/2. Finally in Section 4 we consider gonality
k <10, giving some evidence for the conjectures. Some related results
are contained in my paper ([13]).

(1.6) PROBLEM. Given a smooth k-gonal curve C and m' mutually
independent linear systems gi (call them g;;--- ; gm). Is it true that
either at least one of g1;--- ; gm’ moves in a one dimensional family of
mutually independent linear systems gj on C (hence C has infinitely
many linear systems g}) or C is the limit of a family of curves C; in
Mg .(m) for some m > m' such that each g; (1 < ¢ < m/') is a limit of
a g; on C;.

If the answer to this problem is yes, then the restriction to curves
in M, x(m) is harmless. Up to now examples indicate that the answer
should be yes. In particular this is the case for g = 2k—2; the discussion
on 4-gonal curves in [6] shows it is true for 4-gonal curves; the discussion
on 5-gonal curves in [13] shows it is true in case g > 10, from the
discussion of 5-gonal curves of genus 9 in a forthcoming paper it follows
that the answer is yes if k = 5. The author likes to thank Young Rock
Kim and the referee for their suggestions for improvements.

2. Examples

(2.1) DeFINITION. Let I' be an integral plane curve and s € I'. We
say that I' has multiplicity m at s of simple type if all infinitesimally
near points of s on I' are smooth on I'. "This is equivalent to the
following statement. If w : X — P2 is the blowing-up of P? at s with
exceptional divisor E and if I is the proper transform of I' then each
point of ENT is a smooth point of I'.

(2.2) LEMMA. Let T' be an integral plane curve of degree d and
let s be a point of multiplicity m of simple type on I'. Let C be the
normalization of I'. Let P be a pencil of plane curves of degree e having
no fixed component and no element of P containsI'. Let I'y; T’y be two
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general elements of P. Let g}, be the linear system on C induced by P
and let F be the subdivisor of the fixed divisor of g}, supported on the
inverse image of s € I on C. Then i(I'1,T2;s) > deg(F) — [m2/4] (as
usual [ | means integral part; i(I'1, T'2; s) is the intersection multiplicity
of I'; and I'y at s).

REMARK. Incasem =1 (s asmooth point on I') we obtain Namba’s
Lemma: i(I'1,T9;8) > deg(F) = i(I'1,T;s) (for a short proof see e.g.
[15], the end of the introduction). In case m = 2 (ordinary nodes and
cusps) this is proved in [14].

Proof. Let w : X — P? be the blowing-up at s; let E be the ex-
ceptional divisor and let I';T';; 'y be the proper transforms of resp.
I;Ty; . Let (as aset) 'NE = {s1;--- ; sz} (z < m); they are smooth
points on [. Letn; = z(I‘l, I‘ s;) for 1 < i < z, then Namba’s Lemma
implies i(I'1, [a; ;) > ns, hence 4(T'y, Ta; s) > [mult,( I‘1)]2 +ny+--+

nz). On the other hand deg(F) = m.mult,(I'1) + (ny +- - - +n,), hence
i(I‘l,I‘z;s) > [mults(Ty)]?+deg(F)—m.mults(T'1) > deg(F)—[m2/4].E]

(2.3) PROPOSITION. Let I' be an integral plane curve of degree d;
letm € Zso;u € Zx>o and p € Z>3 and assume I' has m singular points
of multiplicity p of simple type; u singular points of multiplicity 2 of
simple type and no other singularities. Let C' be the normalisation of
I If(d—2)% > 2mu(p—1)+4(u—pu+1) andd > m{u? /4 +u+4d—p
then C is (d — p)-gonal and each g}_ s induced by a pencil of lines
through a point of multiplicity u of .

Proof. Let g} be a base point free linear system on C for some
k < d-p OnTI we obtain a so-called generalized linear system
iys (here § = mE(Lz——l—) + u) (see [11], Lemma 1.4), hence a free g}
for some n < k+46. If n < f(d— f) then there exists a pencil P
of plane curves of degree at most f — 1 without fixed components
inducing gi on C (see [11], Theorem 3.2.1; see also [4]). So, if d —
uw+ mi‘—(i‘;—l) +u < f(d — f) then g} is induced by a pencil P of
curves of degree at most f — 1 without fixed components. We can
take f < d/2 because (d — 2)? > 2mu(p — 1) + 4(u — p + 1). So let
P be a pencil of plane curves of some degree at most e < (d — 2)/2
without fixed components inducing g; on C, i.e. intersections of T
with curves in P gives a linear system g}, = gi + F for some fixed
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divisor F' on C. Let I';;T'y be two general elements of P. Using the
lemma we find deg(I';.I'2) > deg(F) — [/2—2]m — u (here I'1.T'y is the
intersection cycle of I'y and 'y on P?). Since deg(F) > ed — d + p
and deg(I';.T'2) = €?, we find €2 > ed —d + p — m[/%;] —u. Let
gle) = e —ed+ (d—p +m["2—2] +u). For 2 < e < d/2, we have
g(2) > g(e), hence if e > 2 then g(2) = 4—2d+(d—u+m[’2—2]+u) >0,
ie. d< m["fl—z] +u+4 — p. Since we assume d > m[‘fl—z] +u+4—pand

we already know e < d/2, we find e = 1. From this fact the proposition
follows. O

(2.4) REMARK. Under certain conditions the proposition can be
approved. As an example, assume 3 < e < d/2, then we find ¢(3) =
9—3d+(d—p+m[E]+u) > 0. So, if d > 6 and 2d > m[E ] +u+9—p
then we find e < 2. Assume gj is induced by a pencil P of conics. This
pencil has 4 fixed points, hence it induces a linear system of degree at
most 2d —4p on C. Sod — p > 2d — 4p. In case d > 3u we again
conclude that e = 1.

One can continue using pencils P of plane curves of degree at least 3,
however one has to take care about the possibility of fixed singularities
in the pencil. In this way it becomes more involved.

(2.5) DiscussiON. In case m = 0 (i.e. curves with u singular points
of multiplicity 2 of simple type) Proposition (2.3) is already obtained
in [14]. In particular, under the conditions of the proposition, the
normalization C of such a curve I has gonality £ = d—2 and has exactly
u linear systems g;. Choosing such a linear system gi corresponds to
choosing a node and ther dim(|K, — 2g}|) is the dimension of plane
curves of degree d — 5 containing the other nodes (use canonically
adjoint curves). If the nodes are in general position (this is possible—
see [19]) then we conclude dim(| K. —2¢1|) = %ﬂ —(u—1), hence
dim(|2g;|) = 2, hence g; is of type I. This proves C € M 4_2(u). Note
however, fixing g and k, we obtain examples in M, x(m) for at most
one value of m in this way.

(2.6) In the previous discussion we did not use the complete state-
ment of the proposition. It would be enough to find examples of plane.
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curves I' with u nodes such that the normalisation C of ' is (d — 2)-
gonal and each g}_, on C is induced by a pencil of lines.

PROBLEM. Determine the exact upper bound dg of § such that for
a general integral plane nodal curve I" of degree d with § nodes the
normalization C of I is (d — 2)-gonal and each g3_, on C is induced by
a pencil of lines. With respect to the gonality (without a description
of all linear systems g}_,) see [{10].

(2.7) CONTINUATION OF THE DISCUSSION. In case m > 0 two
problems arise: the existence of the curves and the linear systems g}
have to be of type I. Results concerning the existence of such integral
plane curves I with singular points in general position are in [16]. In
order to prove that the linear systems g} i induced by a pencil of
lines through a singular point Py of multiplicity p is of type I, one
needs to consider the dimension of the linear system of plane curves
of degree d — 5 having a point of multiplicity at least p — 3 at Po;
having multiplicity at least 4 — 1 at the other points of multiplic-
ity p and containing the nodes. This is a problem about fat points
in the plane in general position. Assume the dimension is the ex-
pected one, ie. = 5)(d"2) (= 2)(" 8~ (m - l)ﬂ"z—_12 — u, then
dim(|2g}_,[) = 2(d— ) - [ St m ML)y 1 4 G5
g“—zx“—?’l (m —1). ﬂ“zﬂ u =2 Inca,se,u = 3, the problem on
fat pomts is the problem of finding the dimension of plane curves of
given degree having a singularity at a given number of points in general
position. This problem is solved in [17]. In case p > 4 the problem is:
given m general points Pg; Py;--- ;Pp—1, find the dimension of the
linear system of plane curves of given degree having multiplicity u — 1
at P1,--- ,P,,—1 and having multiplicity ¢ — 3 at Pg. This problem is
considered in [5] for some cases.

The advantage of the case m > 0 is that given g and k, once the diffi-
culties are solved, we can find examples of curves belonging to Mg x(m)
for different values of m. More concretely, let I' be a curve with m
points of multiplicity p of simple type and u nodes and assume its nor-
malization belongs to My 4—,(m) (here g = (d“l),z(d_g) - m“(“z_l) —u).
One can expect that I is the limit of a similar curve I';, with m/ points
) u(u2— 1)

of multiplicity p of simple type and v + (m — m nodes (here
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m’ < m). The normalization of I', has the same geometric genus, one
expects it to belong to My g_,(m’). Also one can expect that I' spe-
cializes to curves IV with m points of multiplicity x of simple type and
u’ > u nodes and no other singularities. Within a certain range on v’
one can expect that the normalization of I' belongs to Mg 4, (m) for
g = g— (v —u). Of course, one has to answer questions similar to the
problem in (2.6) in order to proceed in this way.

3. Conjectures

(3.1) In his paper ([1]), Accola proves the following fact. Let C be
a smooth curve of genus g possessing m mutually independent linear
systems gi. Define k = s(m—1)+¢g with —m+3 < ¢ < 1 (s; q integers).
Then g < g(m; k) := [s2(m? — m) + (2sm + ¢ — 2)(q — 1)]/2.

(3.2) In case m > k, one finds g(m; k) = k(k — 1)/2; the genus of a
smooth plane curve of degree k + 1. This already proves My x(m) =0
for m > k and g > k(k — 1)/2. Let C be a smooth curve of genus
g = k(k —1)/2. In [8] the following two statements are proved. The
curve C has at least k 4+ 1 mutually independent base point free linear
systems g if and only if C is isomorphic to a smooth plane curve of
degree k + 1; the curve C has exactly £ mutually independent base
point free linear systems g; if and only if C is birationally equivalent
to a plane curve of degree k + 2 having exactly k£ singular points of
multiplicity 2 of simple type. In particular for g = k(k — 1)/2 and
m > k we also find My x(m) = 0.

(3.3) Assume m < k and let C be a curve of genus g(m, k) possessing
m mutually independent base point free linear systems gi. In [9] one
finds a plane model I for C such that all g} are visible on I. By this I
mean that in most cases any g}, on C is obtained by intersecting I with
a pencil of lines through a singular point of I'; in some special case some
gi on C is obtained by intersecting I' with a pencil of conics through
4 singular points of I'. In particular one finds examples of curves C
of genus g(m; k) possessing m mutually independent base point free
linear systems g; by taking the normalization of a plane curve I' of
degree u + k with m singular points of multiplicity p of simple type for
some suited value of .
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(3.4) In case 2m < k+1 such suited value can be taken to be at least
3. From the discussion in (2.7) this leads to the following conjecture.

CONJECTURE A. Assume 2m < k+1and g(m+1;k) < g < g(m; k).
Then M, x(m') is not empty if and only if 1 <m' < m.

This conjecture is.clearly related to the problems alluded to at the
end of (2.7).

(3.5) Next, let mg = [(k + 3)/2] and mg < m < k (so we are in the
case 2m > k +1). Then g(m;k) = ﬂg;ll + (k — m). From the plane
models mentioned in (3.3) it follows that C is birationally equivalent
to a plane curve I' of degree k + 2 having exactly m singularities of
multiplicity 2 of simple type as its only singularities. From the discus-
sion in (2.5) one finds that Mg(m;k),x(m) is not empty. This does not
indicate a statement as in Conjecture A (this is the difference between
the discussions in (2.5) and (2.7)). For mg < m < k, define

s(m; k) = max ({m" €Z:gmk) < U“_”_)QM _ 3m”})

PROPOSITION 3.6. Let k > 7 and let 1 < m’ < s(m;k) Then
My (m;k),k(m’) is not empty.

Proof. Assume T is plane curve of degree k + 3 having m/’ triple
points of simple type and u double points of simple type as their only
singularities. Let C' be the normalization of I' and assume C' has genus
g(m; k). Since g(m; k) > ﬂ%ﬂl we find 3m/+u < (k+2)2(k+1) - k(kz'l) =
2k + 1. Since k? — 6k +5> 0 we find (k+1)® > 4(2k + 1) — 8 and so
(k +1)2 > 4(3m’ + u) — 8. This is the first condition in Proposition
(2.3).

Because of [12] we can assume m’ > 3. Then 3m’ +u < 2k +1
implies the inequality 2m’ +u < 2k. Hence 2(k+3) > 2m’ +u+9—3.
Since k > 7 we find that the conditions mentioned in Remark (2.4)
hold. So C is k-gonal and each g} is induced by a pencil of lines
through a triple point. Next we use Theorem 5 in [16]. It implies
the existence of such curve I" having its singularities at m’ 4+ u general
points on P2 if (k+3)2+2(k+3)—1 — [E£3] > 6m/ + 3u. But 6m’ 4 3u =
3(3m/+u)—3m’ < 3(2k+1)—9 (because 3m'+u < 2k+1and m’ > 3).
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So the inequality holds if 6k — 6 < (k+3)2+6(k+3) L _ [kis £31. Of course,
this inequality holds. Then using the results of [17], the proposition
follows as explained in (2.7). O

REMARK. We only used mg < m to obtain 3m’ +u < 2k + 1. This
proposition can be extended to more genus cases. Then we enter in
the range 2m < k + 1 and the existence result is not optimal.

REMARK 3.7. An easy computation shows that it is not possible to
find plane curves I' of degree k + p for some p > 4 with m’ > s(m, k)
singular points of multiplicity p such that the normalization C has
genus g(m; k) in case 2m > k + 1. This suggests the following.

CONJECTURE B. If k > 7; 2m > k+1; m <k and s(m;k) <m’' <
m then Mg(m.x) x(m’) is empty.

4. Low gonality

(4.1) In case k € {2, 3} it is well know that, for g > 2k — 1, one has
M, (m) is not empty if and only if m = 1.

(4.2) The case of gonality k = 4 is intensively studied in [6]. One
finds for g > 7 that M, 4(m) is not empty if and only if one of the
following conditions hold: m = 1orm =2 and g € {8,9} or m =3
and g = 7. There exist 4-gonal curves of genus 7 having exactly 2
linear systems g}, however one of them is not of type I and actually
such curve is the limit of 4-gonal curves belonging to Mz 4(3).

(4.3) CURVES OF GONALITY 5. From results mentioned in (1.5)
and from Accola’s bound (see (3.1)) it follows that, if ¢ > 17, then
Mg 5(m) is not empty if and only if m = 1 and if 13 < g < 16 then
M, 5(m) is not empty if and only if m € {1,2}. Next, M;25(m) is not
empty if and only if m € {1,2,3}. Here the value m = 3 is obtained
using plane curves of degree 8 with 3 triple points. In [13] it is proved
that M1 5(m) is not empty if and only if m € {1,2,4}. The fact that it
is not possible to find elements in M;1 5(3) can be explained as follows.
If T is a plane curve of degree 8 with 3 triple points and 1 double
point of simple type then the normalization C of I has genus 11. Also
the pencil of conics through the four singular points induces a g on
C. In [13] it is also proved that Mg s(m) is not empty if and only if
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m € {1,2,5}. It is possible to give a short proof of this claim using the
methods used to study gonality 6 further on, we leave it to the reader
to make this short proof. In a forthcoming paper it will be proved that
Mg 5(m) is not empty if and only if m € {1,2,3,6}. This is beyond
the restriction g > k(k — 1)/2 used in the conjectures in Section 3.

(4.4) CUurVES OF GONALITY 6. If g > 26, then M, ¢g(m) is not
empty if and only if m = 1; if 20 < g < 25 then M, x(m) is not empty
if and only if m € {1,2}; if g € {18,19} then M, ¢(m) is not empty if
and only if m € {1,2,3}. In this last statement examples with m = 3
can be found using plane curves of degree 9 with 3 triple points and
also 1 double point for the case g = 18. M7 ¢(m) is not empty if and
only if m € {1,2,3,4}. The value m = 3 can be obtained using plane
curves of degree 9 with 3 triple points and 2 double points, the value
m = 4 can be obtained using plane curves of degree 8 having 1 double
points.

(4.4.1) CLAIM. Migg(m) is not empty if and only if m € {1,2,
3,5}.

Proof. The value m = 3 can be obtained from plane curves of degree
9 having 3 triple points and 3 double points, the value m = 5 can be
obtained from plane curves of degree 8 having 5 double points. It
should be noted that, if I' is a plane curve of degree 9 with 4 triple
points of simple type as its only singularities, then the pencil of conics
through those 4 triple points also induces a g& on the normalization C
of I'. This is the reason for £ > 7 in the statement of Conjecture B in
(3.8).

Now we prove Mig6(4) is empty. Let C be a smooth 6-gonal curve
of genus 16 and assume C has at least 4 mutually independent linear
systems g¢ of type I. Take 4 such linear systems g1, g2, g3 and g4. Then
dim(|g1+g2+9s+g4]) > 10 ([1]), hence dim(| Kc—(g1+g2+93+g4)[) > 1
while deg(K. — (91 + g2 + g3 + g4)) = 6. Since C is 6-gonal we find
[K.— (g1 + g2 + g3 + g4)| is a base point free g3 on C. If C belongs to
Mi6,6(4) then this g} is one of the linear systems g1, go, g3 or gs; say
it is g4. Then |Kc—(g1+g2+93)| = |294]- Since dim(|g1 +g2+g3|) = 6
([1]) it follows that dim(|2g4]) > 3, a contradiction to g4 being of type
L. O
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(4.4.2) CLAIM. M5 6(m) is not empty if and only if m € {1,2, 3,5, 6}.

Proof. The value m = 3 can be obtained from plane curves of degree
9 having 3 triple points and 4 double points, the value m = 6 can be
obtained from plane curves of degree 8 having 6 double points. The
example with m = 5 comes from plane curves I' of degree 9 with 4
triple points and 1 double point, all of them of simple type. It can be
proved using the arguments of (2.4) that each g} on the normalization
C is given by a pencil of plane curves of degree at most 2. Also, there
exist such plane curves with the sitgular points in general position (one
can apply Theorem 5 from [16]). Take a g on C obtained from the
pencil of lines through some triple point of I". Then, using canonically
adjoint curves, |K, — 2¢}| is obtained from the linear system of plane
curves of degree 4 having a singularity at the other triple points of I'
and containing the double point of I. Next, take the g3 on C obtained
from the pencil of conics in the plane containing the triple points of I.
Now | K. — 2g}| is obtained from the linear system of conics containing
the double point of I. In both cases we find dim(] K, —2¢}|) = 4, hence
dim(|2g§|) = 2, i.e., g¢ is of type L. This proves C € Mi5¢(5). We still
need to prove that M5 6(4) is empty.

Assume C is a smooth 6-gonal curve of genus 15 and assume C has
at least 4 mutually independent linear systems g3 of type I. Fix two
of them, call them g; and g2. Then take two more such g3, call them
¢’ and ¢”. From [1] we know that dim(|g1 + g2|) > 3; dim(|g1 + g2 +
g'|) > 6 and dim(|g1 + g2 + ¢’ + ¢”|) > 10. Moreover equality in the
last inequality implies equality in the other inequalities too. In case
dim(|g1 + g2 + ¢’ + ¢”[) > 10 then dim(|K. — (g1 + 92 + 9’ +¢")|) > 0,
while deg(K. — (g1 + 92 + ¢’ + ¢”’)) = 4. This contradicts C' having
gonality 6. Hence dim(|g- + g2 + ¢’|) = 6 and dim(|g; + g2|) = 3. Now
consider the cup-product map

p:H(g1 +92) ® H(g') = H%(g1 + g2 + ¢')

(here we write H%(g; + g2) to indicate the space of global sections of
the invertible sheaf associated to ¢; + g2, and so on). We conclude that
dim(ker(x)) > 1. From the base point free pencil trick it follows that
|91 + g2 — ¢'| is not empty. Let E’ € |g; + g2 — ¢’| and let ¢ : C — P3
be the morphism associated to |g1 + g2|. Using g1 + g2 C g1 + g2|
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one finds that I' = ¢(C) is birationally equivalent to C (g; and g are
independent) and T is contained in a smooth quadric @ C P3. Since
lg1 + g2 — E'| = ¢’ there is a line L’ C P? such that the pencil of
planes containing L’ induces g’ + E’ on C. Since ¢’ € {g1, g2} one finds
L' ¢ Q hence L' N Q = {s,s5} (here s] € Q; s5 could be an infinitely
near point of s} on Q). Let m, be the multiplicity of " at sj; we can
assume m} > m}. Projection on P? with center s gives rise to a plane
model IV of C of degree 12 — m} and ¢’ induced by a pencil of lines in
P2 through the image s’ of s} under the projection.

This point has multiplicity 6 —m/ on I'; this has to be equal to mj,
hence m/ +mj = 6 and m) > 3. First assume m} > 4. Then any other
gs (mutually independent with g1 go and g')-call it g”-would give rise
to sY; sy and multiplicity of T at s would be at least 3. Since C has
gonality 6 it follows that s{ = s} (otherwise the projection of s{ would
be a point of multiplicity at least 3 on I’ while deg(I') < 8, hence
the pencil of lines through that singular point of IV would give rise to
a linear system gf on C with ¢t < 6) and so the multiplicity at s is
6 —m/. Also the projection s” of s4 is a point of multiplicity 6 —m} on
I" and the pencil of lines through s” gives rise to the linear system g”
on C. Hence, in the case m} > 4 each g§ on C is induced by a pencil
of lines through a point of multiplicity 6 — m} of I'. In case m] =5
then C has infinitely many linear systems g}, in case m{ = 4 then C is
birationally equivalent to a plane curve of degree 8 with double points.
If some double point is not ordinary, then the associated g3 is not of
type L. So, in order for each linear system g§ on C to be of type I it is
necessary that all double points of I are simple. (This can be checked
using canonically adjoint curves. It can also be explained as follows. If
not all double points of I are simple then nevertheless I is the limit
in a family of plane nodal curves of degree 8 with 6 ordinary nodes.
The double point of I that is not simple is the limit of two different
nodes in this family. Hence the associated g3 on C is the limit of two
different g} in a family of curves.) Then C has 6 linear systems g§.
(We do not need the assumption that all gs on C are of type I, since
C has already 4 linear systems g3 of type I, I has already 4 double
points of simple type, hence I'' has at least 5 double points.) In case
m) = 3 then either s{ € {s{,s§} or s & {s{,s5}. In the first case
there is a point s” on I'” of multiplicity 3 such that g” is induced by
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a pencil of lines through s”, in the second case ¢g” is induced by the
pencil of conics through 4 points of multiplicity 3 of I (the projections
of s, s§ and the projections of the 2 lines on @ containing s}; some of
those points can be infinitely near). In both cases I has 4 points of

multiplicity 3. Each pencil of lines through such a point induces a g}
on C.

In case no three of the triple points are on a line then the pencil of
conics through the triple points induces a g§ on C. So, either C has
at least 5 linear systems g§ or at least one of those singular points is
infinitesimally near to another one or three of the triple points are on
a line. Assume one of the triple points of I is infinitely near. Let s
be the point on I, let g} be the linear system on C obtained from the
pencil of lines through s. Let b: X — P? be the blowing-up of P? at
s, let E be the exceptional divisor, let I’ be the strict transform of I
and let § = IV N E, a triple point of IV. Then I has 3 triple points
and 1 double point as its only singularities (still, some of them can
be infinitely near). The canonical linear system |K,| is described by
" elements in |6L—2E| (here L is the inverse image of a line in P?) having
a double point at the three triple points of I and containing the double
point of IV. Let D be an element of |6L — 2E| containing two general
divisors of gi. Those divisors are obtained from intersections with
general elements of |L — E|, hence D contains those elements of |L — E)|.
So |K.—2g3| is described by elements of |4L| such that its sum with the
proper transforms of two general lines through s defines an element of
|6 L — 2E| having a double point at § and also at the other triple points
of I and containing the double point of I'. Now § corresponds to a
tangent direction of P? at s and so the conditions coming from § on
|[4L| is that the curve contains s and that tangent direction. Those are
2 conditions on |[4L|. So, altogether we obtain at most 2+2-3+1=9
conditions on |4L|, hence dim(|K, — 2¢3|) > dim(|4L|) — 9 = 5, hence
dim(|2¢3|) > 3, so g3 is not of type I. So I has 4 different triple points.
The pencil of conics through them induces one more g3 on C unless 3 of
those 4 triple points are on a line. Assume this is the case and let s be
the other triple point. Let gi be the linear system on C obtained from
the pencil of lines through s. Using canonically adjoint curves one finds
that | K.—2g¢| is obtained by the linear system of plane curves of degree
4 having a double point at the other 3 triple points and containing the
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double point. Such a curve needs to contain the line containing the
other triple points. So dim(|K. — 2¢4|) is the dimension of the space
of plane curves of degree 3 containing the other triple points and the
double point of I'". Hence dim(|K, — 2g|) > dim(|3L|) —~ 4 = 5 and so
dim(|2g§]) > 2. Again we obtain that g} is not of type I. This finishes
the proof. 0

(4.4.3) REMARK. If Conjectures A and B hold, then in the range
g > ﬂkz—'ll the case g = 15; k = 6 would be the only case for which
there exists mo > 1 such that M, x(mg) = 0 and for two different
values m';m” > mp one has My x(m’) and M, (m") are not empty.

(4.5) PROPOSITION.
a) Let g = 5%1

ai) Ifk > 7 then Mg (k — 1) is empty.
ail) If k > 8 then My x(k — 2) is empty.
b) Let g = Xk=1) 4 g

bi) Ifk > 7 then My x(k — 2) is empty.
bii) If k > 10 then My x(k — 3) is empty.
c) Let g = ﬁ%_—ll +2

ci) If k > 9 then My i (k — 3) is empty.

Proof. a) Assume C is a smooth k-gonal curve of genus g = ﬂ%z;
k > 7 and C has at least k — 2 mutually independent g} of type I. Fix
two of them, call them ¢, and g,. Let g3,---,9x—2 be k — 4 more of
them. From [1] it follows that dim(|g1 + -+ - + gk—2|) > Méﬂ If
the inequality would be strictly, then dim(| K. — (g1 +- - - +gk—2)|) > 0;
while deg(K.—(g1+- - -+gk—2)) = k—2. This would contradict C having
gonality k. So we find equality dim(|g; + - - + gk—2|) = gk———%@:ﬁ As
explained in the proof of claim 4.4.2 this implies that dim|g; + g2|) = 3
and |g; + g2 — g3| is not empty. Using the morphism ¢ : C — P3
associated to |g1 + g2| one finds ¢(C) = T is birationally equivalent
to C and I is contained in a smooth quadric Q. Also one finds s
and s§ on Q (s3 can be infinitesimally near to s5) with m§ and my
the multiplicity of I' at s and s5; ms + m3 = k; m§ > m% and the
projection on P2 with center s} is a plane curve of degree 2k—m} having
singular points s1, s2, s3 of multiplicities £ — mj such that the pencil
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of lines through s; induces g; on C. In case mj > k/2 it follows that
each of g3, - - - , gk—2 is induced by a pencil of lines, hence I has at least
k — 2 singular points of multiplicity kK —mj3. In case k > 8 this implies
mj = k — 2. Hence I is a plane curve of degree k + 2 with no singular
point of multiplicity more than 2. Repeating the arguments used in
Claim (4.4.2) the singular points have to be of simple type and this
implies the statement of the proposition. In case k =7 and C has at
least k—1 mutually independent g} of type I, again it implies mg = k—2
and hence the statement of the proposition. In case mj = k/2 then
first of all k > 8. Because of the genus, I' has at most 3 singular
points of multiplicity k/2. On the other hand, one should find at least
5 linear systems gi using pencils of lines or pencils of conics through
singular points of multiplicity k/2. Hence we need at least 4 points of
multiplicity k/2, a contradiction.

b) Assume C € My.(m) for some m > k—2and g = '—“S%Z+1.
Fix k — 2 linear systems g}, call them g1,--- , gx—2. From [1] we know
dim(|gy +- - - +gk—2|) = Sﬂ)zi_k—_?l’ hence dim(|K.—(g1+- - -+gx—2)|) =
1 while deg(Kc—(g1+ - ~+gr—2)) = k. Hence |K.—(g1+---+gk—2)| is a
gl. fe.g. g1 = |K.—(g1+--+gr—2)|, then dim(|K.~2¢1]) = dim(|g2+
st gr—2l) = ﬁk;zélc—_—sl and we find dim(|2g;|) > 3, hence g; is not of
type L. This proves m > k — 2. Now assume k > 10; C € Mgx(k — 3)
and g = ﬂkfg + 1. Fix two of the linear systems g}; call them g; and
go. Let g3 be another one and let g4;--- ;gk—3 be the others. In case
dim(|g1 + g2 + gs|) = 6 for any choice of gs, then |g1 + g2 — g3| is not
empty for any choice of g3 and as before one obtains a contradiction
because of the non-existence of a suited plane model for C. Now assume
dim(|g1 + g2 + g3|) > 6. Using [1], one finds dim(|gy +g2+- -+ gr—s+
2g5—3l) > E=UE=2 hence dim(|K— (g1 +92+ - +9k-a+2gk-3)]) >
1. Since deg(K, — (g1 + g2 + - - - + gk—4a + 2gx—3)) = k this would imply
|Ke— (g1 + 92+ + ge—a +29x-3)| € {g1,- -~ ,gk—3}. This condition
holds also if one changes gx_3 and g; for any 4 < i < k—4. On the other
hand the linear system g} = |K.—(g91+92+- -+gx—-4+2gk—3)| changes.
Since k > 10 we can assume |K. — (g1 + 92 + -+ + gk—a + 2gx-3)| €
{94, -+ ,gk—3}. In case it is not gx—3 - say it is gk—4 - then 2gx_4 =
|Kc—(91+ -+ gk—s +2gx—3)|- Since dim(|g1 + g2 + g3) > 6, one has
dim(jgr + -+ + grs + 20k—al) > E=2E=Y hence dim(|2gx-4l) > 3,
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a contradiction to gx_4 being of type L. In case it is g3 one finds
12gk—3| = |Kc — (91 + - + gk—3)| and since dim(|g1 + - - + gk-3]) >
gk—_z—ék—_—‘gz in this case one concludes again a contradiction to gr—3
being of type L.

¢) Finally assume C € My x(k — 3) with g = ’j&%l +2and k>09.
Fix two linear systems g} on C, call them g; and go. If for any other gi
one has dim(|g; + g2 + g|) = 6, then the non-existence of a suited plane
model for C implies the statement of the proposition (here we use k >
9). So assume for some gj - call it g3 - one has dim(|g1 + g2 + g3|) > 6.
Let g4, -+ ,gr—3 be the other linear systems gi. Then (again using [1])
dim(|2g1 + g2 + -+ + gk—3|) > M%k—_zl hence dim(| K. — (291 + g2 +
-+++gk—3)|) > 2, while deg(K.— (291 + 92+ - - +9x-3)) = k+2, hence
C would have a g2 ,. Then C cannot belong to My x(k — 3). a

(4.7) REMARK. This proposition implies Conjecture B in the range
7 < k < 10. For k = 11 the only statement that still is not proved is:
Msg11(7) is empty.
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