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A REMARK ON GENERALIZED COMPLEX
ELLIPSOIDS WITH SPHERICAL BOUNDARY POINTS

AKIO KoDAMA

ABsTRACT. It is well-known that there is no analogue to the Rie-
mann mapping theorem in the higher dimensional case. Therefore,
it would be an interesting question to find sufficient conditions for
domains to be biholomorphically equivalent to the unit ball. In this
paper, we investigate this question in the case where the given do-
mains are generalized complex ellipsoids with spherical boundary
points.

1. Introduction

It is well-known that there is no analogue to the Riemann mapping
theorem in C™ (n > 1), that is, there are many simply connected
domains D in C™ that are not biholomorphically equivalent to the
unit ball B™ in C*. Therefore, it would be an interesting question
to find sufficient conditions for domains D to be biholomorphically
equivalent to B™. In connection with this, one can see several articles.
For instance, Pinchuk [10] and Huang-Ji [5] obtained the following
Riemann mapping type theorem. In order to state their results, let
us recall some definitions. Let p be a point of 8D, the boundary of
D. Then, the point p is said to be a spherical boundary point of D
if there is an open neighborhood U of p in C™ and a biholomorphic
mapping f : U — f(U) ¢ C" such that f(U N D) C 8B™ and
f(U N D) c B™ Moreover, we say that 8D is algebraic if it is defined
by a real polynomial. Now their results may be stated as follows:
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TueorREM P-H-J. Let D be a bounded strictly pseudoconvex do-
main in C™ with connected real analytic boundary 0D. Then we have:

(I) (Pinchuk [10]). If&D is simply connected and D has a spherical
boundary point p, then D is biholomorphically equivalent to
B™.

(II) (Huang-Ji [5]). IfOD is algebraic and D has a spherical bound-
ary point p, then D is biholomorphically equivalent to B™.

Note that the simply connectedness of 8D is not assumed in (I1).

In view of these results, it would be natural to ask the following
question: Given a domain D in C™ with a spherical boundary point,
under what additional hypotheses is D biholomorphically equivalent to
B"? Qur purpose of this note is to study this question in the case
when D is a generalized complex ellipsoid

E(n’;nla--"ns;plu-“)ps)

:{(zl,...,zs)ecnl X oo x O

ilzilgpz < 1}

i=1

inC” =Cmx...-xC" where0 <py,...,ps €R, 05n1,...,n: €%

with n = ny + - - + ns and | - | denotes the Euclidean norm on C™:.
Here, without loss of generality, we always assume that
(%) pp=1 and p; #1, n;>0 for i=2,...,8s.

Also, it is understood that p1 = 1 does not appear if ny =0 and this
domain is the unit ball B™ if s = 1. Then we can prove the follow-
ing theorem, which was announced at the International Conference on
Several Complex Variables in Seoul, Korea, 1998:

TueoREM. Let E be a generalized complex ellipsoid in C™ as
above. Assume that s 2 2 and na,...,n; 2 2. Then E does not have a
spherical boundary point. In particular, among the class of all gener-
alized complex ellipsoids in C™ = C™ x -.- x C™ with ny, ..., 75 =2,
the unit ball B™ is the only one that has a spherical boundary point.

In the special case where all p;’s are integers, our theorem is an im-
mediate consequence of Dini and Selvaggi Primicerio [2], [3]. However,
if some of p;’s are not integers, then OF is not smooth and E is not
geometrically convex, in general. Hence, their technique is not directly
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applicable to our case. Finally, it should be remarked that the assump-
tion ng,...,ns 2 2 in our theorem cannot be dropped as one may see
in the examples such as E(a) = {(z,w) € C" ' x C | |z]2+|w|?** < 1}
with arbitrary 0 < a # 1. Indeed, every point p, = (20,w,) € OE(a)
with w, # 0 is a spherical boundary point, but obviously we have
E(a) # B™ in this case.

In Section 2 below, we give a proof of our theorem and, in Section
3, we make a conjecture and pose some questions, that arise from the
characterization problem of generalized complex ellipsoids from the
viewpoint of biholomorphic automorphism groups.

2. Proof of Theorem

We will proceed along the same line as in the proof of [6; Lemma).
Although there are some overlaps with that paper [6], we carry out the
proof in detail for the sake of completeness and self-containedness.

Before undertaking the proof, we need to introduce the following
notation: For a point z = (z1,...,2,) € C™ x -.- x C? = C” and for
the generalized complex ellipsoid F appearing in the theorem, we set

|zo] -+l # 0}

and denote by Aut,(E) the identity component of the Lie group Aut(F)
consisting of all biholomorphic automorphisms of E. Then, by using
the facts in the previous paper [7; Section 1], the following assertions
are easily proved:
(2.1) 9*E is a connected, strictly pseudoconvex, real analytic hyper-
surface in C™ consisting of all strictly pseudoconvex boundary points
of E. Moreover, it is simply connected, since ng,...,ns = 2 in our case
[4; p. 346].
(2.2) Aut,(F) can be regarded as a subgroup of Aut(B™ x C"2 x - - - x
Cre).
(2.3) O*E is a subset of B™ x C™ x - - - x C™: invariant under Aut,(E)
and Aut,(E) acts on 8*F as a real analytic CR-automorphism group
of 0*E.

With this preparation, we shall start the proof of our theorem. The
proof is by contradiction, so we assume that F has a spherical boundary
point p. Notice that p is necessarily a strictly pseudoconvex boundary

Z2=(Z1,000225) = (U1, ..., Un), B*Ez{zEBE
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point of E; hence p € 8*E. Therefore, there is an open neighborhood
U of p in C" and a biholomorphic mapping f : U — f(U) € C™ such
that

UNOE =UNJE, f(UNO*E)C dB™ and f(UNE) C B™

Since 9*F is a connected and simply connected, strictly pseudoconvex,
real analytic hypersurface in C™ by (2.1), it follows from a result of
Pinchuk [10], [11; p. 193] that:

(2.4) f extends to a locally biholomorphic mapping F' defined on some
connected open neighborhood V of 8*FE in C™ such that F(0*F) C
6B™ and F(VNE) C B".

Once it is shown that this F induces a biholomorphic equivalence be-
tween E and B", it follows from a result of Naruki [9] that ps,...,ps =
1 and so E = B™ as sets. This contradicts our assumption pa,...,ps 7#
1. Thus our proof is now reduced to showing the following:

(»+) F extends to a biholomorphic mapping from E onto B™.
We will prove this assertion by several steps.

1) F extends to a holomorphic mapping F' from E into B™. 'To
prove this, take an arbitrary r with 0 < r < 1 and put K, = {z € 0F |
|z;] = r (2= i < s) }. Notice that there exists a small § > 0 such that
K. #0for 0 <r <25 Since K, C9*E CV and K. is compact in V
for 0 < r < &, one can choose a small £ = €(r) > 0 in such a way that

Um::{zEE‘1—E<Z|zil2pi<1, |zi] > r (2§i§s)} c V.
i=1

Clearly, U, is a bounded Reinhardt domain in C™. Moreover, since
ng,...,Ng = 2, we have

Ur,eﬂ{uz (u1,...,up) € C" | Uj =0} #£@ for j=1,...,n
Hence, by a well-known fact [8; p. 15] every component function F; of
F has a holomorphic extension F] to the smallest complete Reinhardt
domain ﬁr,s in C” containing U,... On the other hand, by simple (but
a little bit complicated) computations one can check that [7',.,5 is defined
by the following inequalities:

3

SlaP <1 and Y |mF ) rP<l

i=1 il el
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for all subsets I = {i1,...,4x} of the set {2,...,5} with2 <4; <.

ir &5, 1 £k X s—1. Hence, putting E, = U,.E for smlphclty, we
have seen that F = (F1,...,Fy) has a holomorphic extension F™ :=
(FY,...,FI) to E. UV. Note that B, C E; for 0 < s < r < §,
Uo<rcs Br = E and that the holomorphic extensions F* are uniquely
determined by the values of F' on a small neighborhood of a given point
of Kos C (Jgepcs Kr- Then, by standard argument, one can define a

holomorphic extension F : EUV — C* of F: V — C™,

Now we wish to show that F(E) C B". We first claim that F(E) C
Fn, the closure of B™ in C™. Indeed, assume the contrary. Then there
exists a point 2° = (2{,...,22) € E such that F(z°) ¢ B". By taking
a nearby point if necessary, one may assume that [2§|---]22| > 0. Set
H(2°) = {(2£,.-.,25_1)} x C" and E(2°) = En H(2°). Then E(2°)
can be regarded as an open ball in C™* containing the point z° and
the set U(2°) := H(2°) N (E U V) is an open neighborhood of the
closure E(2°) in C™. Consider now the continuous plurisubharmonic
function ¢ : z, — —1 + [ﬁ(zf,...,zg‘_l,zs)lz defined on U(2°).
follows then from (2.4) that ¥(8F(2°)) = 0 and (z;) < 0 on E(2°) N
V. This, combined with the maximum principle for plurisubharmonic
functions, guarantees that (2°) < 0. However, this means F(z°) €
B™, a contradiction; and hence F (E) C B Therefore, considering
the non—constant continuous plurisubharmonic function gb z— —1+
| F( z)| defined on E, we have now that 0 2 sup, 5 %(u) > ¥(z) for

every point z € E, ie., F(E) C B

2) There erists a locally injective, real analytic homomorphism & :
Aut,(E) — Aut(B™) such that $(c)oF = Foo on E for dll o €
Aut,(F). Indeed, take an arbitrary o € Aut,(E). By virtue of (2.2),
(2.3) and (2.4), one can choose an open neighborhood W of the spher-
ical boundary point p € 8*E so small that W U oc(W) C V and F
is injective on W and on o{W). Let us consider the biholomorphic
mapping ¥ := Fooo (F[W)‘ (W) — F(G’(W)). Then ¥ gives
a homeomorphism from FW)NnB" onto F(c(W)) N B" such that

(F(W) M @B"™) C dB™ Hence, by an extension theorem due to
Alexander [1 ] or Rudin [12; p. 311] we obtain an element ¥ ¢ Aut(B™)
such that ¥(z) = ¥(z) for all z € F(W N E). Note that W N E and
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F (WNE) are non-empty open subsets of E/ and B™, respectively. Then,
by the principie of analytic continuation, we have that FoF=Foo
on-E and ¥ is uniquely determined by o. Accordingly, one can define
a mapping

& : Aut,(E) — Aut(B™)

by setting #(c) = ¥ so that ®(c)oF = Foo on E for all o € Aut,(E).

It is easy to check that @ is a group homomorphism. Once it is
shown that @ is continuous at the identity element idg of Aut.(E),
it follows that @ is real analytic on Aut,(E) (cf. [4; p. 117]). Since
the topology of Aut,(E) satisfies the second axiom of countability,
we have only to show that ¢ is sequentially continuous at idg. For
this let us take an arbitrary sequence {o,} in Aut,(F) which con-
verges to idg and assume that {$(o, )} does not converge to the iden-
tity element idg» of Aut(B™). Passing to a subsequence, we may as-
sume that there is an open neighborhood O of idg~ in Aut(B™) such
that &(o,) ¢ O for all v. Pick an arbitrary point z € E. Then
lim, 00 8(0,,) (F(2)) = limy 00 F(0v, (7)) = F(z) € B, which implies
that {®(c,)(F(x))} lies in a compact subset of B™. Hence, after taking
a subsequence if necessary, we may assume that {&(c,)} converges to
some element g € Aut(B") (cf. [8; p. 82]). Since g ¢ O, we see that g #
idgn. On the other hand, we have g(F(z)) = lim, ;00 @(ay)(ﬁ(z)) =
lim, —00 F (0, (2)) = F(z) for all z € W N E; consequently, g = idg» by
analytic continuation. This is a contradiction. Therefore, & is contin-
uous at idg, as desired.

Finally we claim that & is locally injective. It suffices to prove that
& is injective in some neighborhood O of idg. To this end, let us
select a small open neighborhood W of the point p € 0*F in C™ and
non-empty open subsets Wy, Wy of W N E with the properties: F' is
injective on W, and W, is a relatively compact subset of Wa. We
claim that O = {0 € Aut,(E) | o(W1) C W} is what is required.
Indeed, it is clear that O is an open neighborhood of idg in Aut,(E).
Moreover, assume that @(o1) = @(o3) for 01,02 € O. It follows that
F(o1(2)) = #(01)(F(2)) = ®(02)(F(2)) = F(o2(2)) for all z € E.
Since F' is injective on Wy C W and since 01(z),02(z) € Wy for all
z € Wi, this says that o7 = 02 on Wy; and hence 03 = 02 on E
by analytic continuation. Therefore, we have shown that @ is locally
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injective on Aut,(E), completing the proof of 2).

Before proceeding further, we need some preparation. First, notice
that B™ is homogeneous and each element ¢ € Aut(B™) extends to a
biholomorphic mapping defined in an open neighborhood of B'. Thus,
shrinking the neighborhood V of §*F and replacing F by a suitable
mapping of the form g o F with some g € Aut(B™), if necessary, we
may assume that the holomorphic mapping F:EUV - C" satisfies
an additional condition ﬁ(o) = 0, where o stands for the origin of C™.
Next, let us consider the toral subgroups Tg and T~ of Aut,(E) and
Aut(B™), respectively, induced by the rotations Ry on C” as follows:

Ry : (u1,...,un) — ((exp J—_lel)ul,...,(exp\/—_len)un)

for 6 = (61,...,6,) € R™ Then &(ITg)(0) = &(T)(F(0)) = F(Te(0))
= F(0) = o, which says that #(Tg) is contained in the unitary group
U(n) of degree n (the isotropy subgroup of Aut(B™) at the origin o).
Since $(Tg) as well as T is now a maximal torus in U(n) by 2),
it is well-known that they are conjugate to each other in U (-n), that
is, there exists an element 7 € U(n) such that 7-&(Tg) 71 = Tpn.
Thus, considering 7 o F To® o1 ! instead of F, & if necessary, we
may further assume that #(Tg) = Tg~. Under these assumptions, we
claim the following:
3) F= (ﬁl,...,ﬁn) : E — B™ can be written in the form

Fi(ug,...,un) = Aj(ug)%t - (ug)% (15

where C 3 A; # 0, Z 3 ajx 2 0and aj1 +---+ajn 2 1 for all
j,k. Indeed, since the restriction ¢{Tg g1ves rise to a local isomor-
phism between Ty and T~ and since #(a)(F(u)) = F(o(u)) on E for
all ¢ € Tg, there exists a non-singular real n X n matrix A = (a;z)
such that

[EA

n),

(2.5) (exp\/—_l(aj101+ ‘4 Qjn n)) i(u) = (Rg( )) on E

for every j = 1,...,n and all 8 = (61,...,0,) € R™. On the other
hand, being a holomorphic function on the holomorphically convex
Reinhardt domain E with center o, each F; can be expanded in E in
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a convergent power series ﬁj(u) = Zm:o Alu¥. Substituting this in
(2.5) and comparing the coefficients of u¥, we have

AJ exp V=1(aj101 + -+ ajpbyn) = A exp/—1(1181 + - - + vnby)

for all v and all §. This implies that A7 = 0 if v # (a;1,-.-,a;n) for
j=1,...,n. Combining this with the fact that ﬁj is not constant by
(2.4), we conclude that each F ; has the form required in 3).

4) F:E—-B"isa proper holomorphic mapping from E onto B™
with F~1(0) = {0}. Thanks to the fact 3), in order to prove this,
one may regard F as a holomorphic mapping defined on the whole
space C". Then we have F(OE) C 8B™, since F(8*E) C B™ and
O*E is dense in #E. This implies that F : E — B" is a proper
holomorphic mapping and F~1(0) is to be a finite set of points (cf. [12;
p. 300]). Moreover, we claim that F~1(0) = {0}. Indeed, assume that
ﬁ*l(o) contains a point u° # o. Then F(Tg(u°)) = @(TE)(ﬁ(uo)) =
Tgn(0) = 0, which says that Tg(u®) C F~1(0). But, this is impossible,
since the orbit Tg(u®) is a positive dimensional real torus imbedded
in E and F~1(0) is a finite subset of E. Therefore we conclude that
F~1(0) = {0}, as desired.

5) F:E — B" is, in fact, a biholomorphic mapping. Keeping the
fact 3) in mind, we define the complex analytic subvariety V; of E by

V; = {uEE‘(ul)ajl"'(un)aj“ = 0} for 7=1,...,n.

It is clear that each V; is a non-empty open subset of the union of
finitely many coordinate hyperplanes in C™. Moreover, by virtue of 4)
we know that dim(Vi N---NV,) = dim F~1(0) = 0. Now we assert the
following:

(2.6) For each k, 1 £ k < n, there exists a unique j = j(k) such that
a;x # 0 and a;, =0 for all [ # 5.

Indeed, assume first a;x = 0 for all j = 1,...,n. This means that F
is independent on the variable uy by 3), which is impossible by (2.4).
Assume next that a;x # 0, aip # 0 for some j, [ with j # I. Then
V; NV, contains the complex analytic subset EN {u € C™|u; = 0}
of E of dimension n — 1; and hence dim(Vy N---NV,) 2 1. Thisis a
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contradiction; proving our assertion (2.6). Recall here that, for every
J=1,...,n, we have a;; # 0 for some k by 3). Then, this combined
with the assertion (2.6) guarantees that F has an expression

ﬁ(u) = (Al (ua(l))ala(l)y Ty -A'n (ua(n))and(n))a ue C"

where ¢ is a permutation of {1,...,n}. Note that, for every j =
1,...,n, there exists a point u® € 0*F whose j-th component u; =0,
since ng,...,n, = 2 by our assumption. Then, the fact (2.4) that the
holomorphic Jacobian of F does not vanish at such a point u° yields at
once that a;,(;) =1 for every j = 1,...,n. Therefore, F:E-Bris
a biholomorphic mapping, completing the proof of our assertion (xx).
‘We have thus proved the theorem.

3. A conjecture

We finish this note by a conjecture and related questions. Let us
now consider two generalized complex ellipsoids

E:=E(niny,...,ngp1,...,ps) and B = E(nyma,...,meq1,- -, qs)

in C™. Then, under the same assumption (%) as in the introduction,
we have the following:

CONJECTURE. Let z € 9E, T € OF and U, U open neighborhoods
of z,z in C", respectively. Assume that
(1) ng, m; =2 for 4,7 22,if 5,t22;
(2) f:U — U is a biholomorphic mapping such that f (UNJE) C
8E and f(UNE) C E.

Then f extends to a biholomorphic mapping F' from E onto E.

Once it is shown that this is true, then one would obtain the same
characterization theorem as in [6; Theorem 2] for any generalized com-
plex ellipsoids in C”,

By the proof of our theorem, the conjecture is true in the special
case where E is the unit ball B™; and, in fact, we have proved that
E = B"™ = F and F is an automorphism of B™ in this case. In the
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situation when all p;’s and ¢;’s are positive integers, Dini and Selvaggi
Primicerio’s result [2] confirms this conjecture. Moreover, it is shown in
[6; Theorem 1] that this is also true for the class of generalized complex
ellipsoids E(k,a) := E(njk,n — k;l,0) with 0 < k £ n -2 0 <
a € R. In its proof, we used efficiently the following fact on the
structure of E(k,a) with o # 1: Let 3* E(k, @) be the set of all strictly
pseudoconvex boundary points of E(k, ). Then we have

(3.1) 8*E(k, ) is a connected and simply connected, strictly pseudo-
convex real analytic hypersurface in C™ without umbilical points in
the sense of CR-geometry;

(3.2) Aut(E(k,)) acts transitively on 3* E(k, a) as a CR-automorphism
group of 3*E(k, a).

Hence, Webster’s CR-invariant Riemannian metric g can be defined
on the whole space 8*E(k,c) and (8*E(k, ), g) is a complete real
analytic Riemannian manifold. This played an essential role in the
proof of [6; Theorem 1].

In view of this fact, we would like to pose the following questions:
For a given generalized complex ellipsoid E satisfying the assumption
() in the introduction, we denote by &*E and U(H*FE) the sets of
strictly pseudoconvex boundary points of E and of umbilical points of
O*E, respectively. Assume that s = 2 and na,...,ns 2 2. Then

(Q.1) is U(F*E) always the empty set?,
(Q.2) if U(O*E) is empty, is it true that Webster’s metric on O*F is
complete?

At least, we know that U(9*E) cannot contain a non-empty open
subset of 0*F. Indeed, assume that there exists a non-empty open
subset O of 0*E contained in U(0*E). Then O must be locally CR-
equivalent to the unit sphere B™ (cf. [13; p. 213]). This combined
with our theorem yields that £ = B™ as sets, a contradiction.
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