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INVARIANT METRICS AND COMPLETENESS

PETER PrFLUG

ABSTRACT. We discuss completeness with respect to the Carathéo-
dory distance, the Kobayashi distance and the Bergman distance,
respectively.

I. Definitions

By E we denote the open unit disc in the complex plane C, i.e.,
E: ={X € C: |A| < 1}. For two points A;, Az € E,

.= 1+m(}‘ls)\2) L Al — Ay
PO )t = (1/2)log T8, where (g, Ae): = ’1—:\2,\1 ,

is called the Poincaré (or hyperbolic) distance on E.
The main object of our interest are holomorphically contractible sys-
tems of functions or pseudodistances:
Let G denote the set of all domains in all C*’s (or the set of all con-
nected complex manifolds, or, even more general, the set of all complex
spaces). A family d: = (dg)geg of functions, respectively pseudodis-
tances, dg: G X G — Rxq is called holomorphically contractible if
1) dg =p (normalization),
2) de,(f(=z1), f(22)) < dg, (21, 22), whenever G; € G, f € O(G1,Ga),
and 21,29 € (3.
To avoid the “tanh™'” we sometimes use another normalization,
namely m instead of p. We put dg =: p(0,d) = tanh? de:.
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There exists a smallest and also a largest holomorphically contractible
family, namely:
a) dg = cg, the Carathéodory pseudodistance on G, G € G, where

calz,w): =sup{p(f(2), f(w)): f € O(G; E)}
=p(0,C*G(Z,’LU)), zZ,wE G:
where cf;(z,w) = sup{|f(w)|: f € O(G,E), f(z) = 0}.
b) dg = k¢, the Lempert function on G, G € G, where
ko(z,w): =inf{p(A1, A2): 2f € O(B,G): f(\) = 2, f(Aa) = w}
=p(0.k5(z,w)), zw€eG,
where k5 (z,w) = inf{|A|: 3p € O(E,G): (0) = z, p()) = w}.
Then the following is true:

Whenever d = (dg)geg is a holomorphically contractible system of
functions, then c¢g < dg < kg.

REMARK. a) ¢g is a pseudodistance and it is continuous in both
variables; _
b) kg, in general, does not satisfy the triangle-inequality; kg is, in
general, not continuous but it is upper semicontinuous.

To improve the situation in b) we define
kg: = the greatest pseudodistance below of EG.

kg is called the Kobayashi pseudodistance on G.

REMARK. The system (kg)geg is the largest holomorphically con-
tractible family of pseudodistances; kg is continuous in both variables.

There is another family of functions which will be important for fur-
ther discussions, namely the family of all pluricomplez Green funcitions:
for G 2 G 3 a, 2 we put

ge(a,z): =sup{u(z): u: G — [0,1), logu € PSH(G),
u < C|| - —a| near o},

where PSH(G) denotes the set of all plurisubharmonic functions on
G.

Then dg: = tanh™! 9% leads to a holomorphically contractible system
of functions.
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REMARK. ¢ is upper semicontinuous but, in general, not continu-
ous.
Moreover, g¢ is, in general, not symmetric.

In order to follow the standard notations we put
go: =loggg.
Then the following inequality holds
logcly < g < log k.

To finish this short introduction we recall the following surprising
and deep result due to L. Lempert.

THEOREM. IfG € G is biholomorphically equivalent to a convex do-
main, then cq = kg, i.e., do = ¢g for any holomorphically contractible
family d of functions.

For more details we refer to [15] and [11].

I1. Completeness

Let d be a holomorphically contractible family of functions. We
say that a domain G € G is dg-hyperbolic if dg(z,w) > 0 whenever
z2we G, z#F w.

REMARK. 1) In the case dg = ¢g or dg = kg hyperbolicity means
that the Carathéodory pseudodistance, respectively the Kobayashi
pseudodistance, is in fact a distance.

2) G is cg-hyperbolic iff H*°(G) separates the points of . In partic-
ular, any bounded domain G is Carathéodory hyperbolic.

Thus under the assumption of hyperbolicity w.r.t ¢ and kg, re-
spectively, we are dealing with metric spaces (G, cg) and (G, kg), re-
spectively, where ¢ and kg, respectively, are continuous on G x G.

For a continuous distance dg: G X G — [0, 00) we say

DEFINITION. a) G is dg-complete if any dg-Cauchy sequence does
converge to a point in ¢ in the G-topology.
b) G is called dg-finitely-compact if any dg-ball B, (a,r) with center
a € G and finite radius r is relatively compact in G w.r.t. the G-
topology.
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REMARKS. 1) If G is bounded, then T., = T, = T(G), where
T4, respectively T(G), means the topology induced by dg, respec-
tively the standard topology of G.

2) In general, T., # T(G), even if G is eg-hyperbolic (cf. {12]).

3) If G is kg-hyperbolic, then T, = T(G).

4) “ci-finitely compact” implies “cg-complete”.

5) “kg-complete” is equivalent to “kg-finitely compact”. Observe that
ko is an inner metric whereas, in general, ¢g is not.

6) If G C C then: G is cg-complete iff G is ce-finitely compact.

7) OPEN PROBLEM: What about the implication “<=” in 6) in the
case of an arbitrary domain G C C™, n > 2 (or in case of manifolds or
in the case of irreducible complex spaces)?

7’) There is a highly reducible 1-dimensional complex space X for which
the implication “<” in 6) is wrong (cf. [13]).

8) cg completeness, respectively kg-completeness, implies that & is
pseudoconvex.

Because of 8) we will always assume that the domains under con-
sideration are pseudoconvex.

IT1. Completeness for Reinhardt domains
It was 1984 when the following result appeared (cf. [20]).

THEOREM. a) A bounded domain G C C™ is ce-finitely-compact iff
for any fixed point zp € G and any sequence (z,),cx C G converging
to a boundary point z* € G (w.r.t. T(C")) there exists f € O(G, E):
F(20) = 0 and sup{|f(z,)|: v e N} = 1.

b} Any bounded pseudoconvex Reinhardt domain G, 0 € G, is cg-
finitely-compact.

In virtue of a), a bounded domain G is cg-finitely compact if G has
“sufficiently many peak-points”. In particular, strongly pseudoconvex
domains or pseudoconvex domains in C? with real analytic boundary
are cg- finitely compact.

OPEN PROBLEM: Are all bounded pseudoconvex domains with a
smooth C*®-boundary cg-finitely compact (or cg-complete)?

Then, in 1994, S. Fu proved the following more general result (cf.
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[6])-
THEOREM. a) Let G C C" be a bounded pseudoconvex Reinhardt
domain which satisfies the following condition

(*) if GNV; # @, then GNV; # @,

where V;: = {z € C": z; = 0}.
Then ( is cg-finitely compact.
b) Any bounded pseudoconvex Reinhardt domain is kq-complete.

We call condition (*) the Fu-condition.

That the Fu-condition is in some sense necessary is seen by looking
at the following examples:

ExaMPLE. 1) Put G: = {(z,w) € C?: |w| < |z| < 1}. G is not cg-
complete, since ¢e((1/v,0),(1/1,0)) < ¢p. (1/v,1/u) = ce(l/v,1/p)
— 0 when v, 4 — oo. Obviously, G does not fulfil the Fu-condition.
2) Using the biholomorphic mapping (z,w) ~— (1/z,w) leads to the
unbounded pseudoconvex Reinhardt domain G: = {(z,w) € C2: |zw|
< 1 < |2|}, which, of course, is not cz-complete, but fulfils the Fu-
condition.

So there are two natural questions:
1) is there a good description of all ¢-hyperbolic (k-hyperbolic) pseu-
doconvex Reinhardt domains?
2) is the Fu-condition together with the boundedness necessary for
being c-complete in the class of pseudoconvex Reinhardt domains?
The complete answer is due to W. Zwonek (1998) (cf. [21]).

THEOREM. Let G be a pseudoconvex Reinhardt domain in C™.
Then the following conditions are equivalent:
a) G is cg-hyperbolic;
b) G is kg-hyperbolic;
¢) G is Brody-hyperbolic, i.e., O(C,G) = G;
d) 3A = (A]) € Z(n x n), rank A = n and IC € R such that
a) G C G(ALC)N---NG(A™, Cy) =: G(A, C), where

G(A7,C;): ={zeC™: 2, #0, if A} <0, and

; : )
|2 i) = 2] < exp G},
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(Even more is true: it is possible to choose A such that |det A = 1,
ie, A"t € Z(n x n).)

B) V; NG = & or it is c-hyperbolic as a domain in C*™1;

e) G is algebraically biholomorphic to a bounded Reinhardt domain;
f) G is Kobayashi-complete.

REMARK. 1) Condition f) is a consequence of the Fu result via e).
Zwonek’s proof does not use the Fu-theorem; it relies on the effective
formulas for invariant functions on elementary Reinhardt domains.

2) The theorem shows that all the hyperbolicity notions coincide; so,
in the future, we will speak only on hyperbolic Reinhardt domains.

To complete this part of the discussion we mention the following
result.

THEOREM. Let G be a pseudoconvex hyperbolic Reinhardt domain
in C™. Then:
G is algebraically equivalent to an unbounded pseudoconvex Reinhardt
domain iff G is algebraically equivalent to a bounded pseudoconvex
Reinhardt domain which does not fulfil the Fu-condition.

Now, since we know all the hyperbolic pseudoconvex Reinhardt do-
mains we can turn to investigate Carathéodory completeness for hy-
perbolic pseudoconvex Reinhardt domains.

Let us first discuss two examples that look very similar.

ExampLE. Put
Gr: ={z€C?*: 1/2|z1|F < |22| < 2|21, ]21] < 2}, k=2 or k = V2.
In the case k = 2, using the embedding A — (), A?), A € E,, we are
led to
e, ((1/v, (1/v)?), (1/ 1, (1/)?)) < ep. (1/v,1/u) = eu(1/v,1/p) — 0,
when v, 4 — o0,
i.e., G is not cg,-complete.

Although G 3 looks geometrically very similar to G there is no
way to embed a punctured disc to conclude that it is not Carathéodory
complete.

Nevertheless, the following theorem (due to W. Zwonek (1998))
bolds (cf. [22]).
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THEOREM. Let G be a hyperbolic pseudoconvex Reinhardt domain
in C™. Then the following conditions are equivalent:
a) G is cg-finitely compact;
b) G is cg-complete;
¢) there is no boundary sequence (z,)ven C G with Y > 1 g& (2, Zut1)
< 05
d) G is bounded and G fulfils the Fu-condition.

Moreover, the following characterization of hyperconvex Reinhardt
domains (due to M. Carlehed, U. Cegrell, and F. Wikstrom (cf. [3]),
and P. Pflug, W. Zwonek (1998) (cf. [22]) is true.

COROLLARY. Let G be a pseudoconvex Reinhardt domain in C™.
Then the following properties are equivalent:
a) G is hyperconvex in the sense that there is u € PSH(G) N C(G),
u < 0, such that {z € G: u(z) < —e} CC G for any £ > 0;
b) G is bounded and fulfils the Fu-condition.

Hence the description of Carathéodory completeness in the class
of pseudoconvex Reinhardt domains is completely settled. Observe
that both notions of “Carathéodory complete” coincide in that class of
domains.

REMARK. If G is a pseudoconvex bounded Reinhardt domain in C?
one can prove that for any z° € 8GN(C,)? and any a € G the following
is true: cg(a, 2) —, o0, ie., 8GN (C,)? is co-infinitely far away from
points in G. Inzcozntrast to the two-dimensional case there exists a
bounded pseudoconvex Reinhardt domain G C C3, a point a € G and
a boundary sequence (z,),eny C G with yli_}nc}o z, € (G N C3) such that

the sequence (cg(a, z,))ven is bounded (cf. [23]).

IV. Completeness for pseudoconvex circular domains

Recall that a domain G C C™ is called balanced (or complete circular)
if EG C G. Let G be a balanced domain. Then there exists an upper
semicontinuous function h = hg: C* — [0,00), u(Az) = |Alu(z),
A e C, z € C™, such that

G=Gh={zeC" hz) <1
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The function A is uniquely defined; it is called the Minkowski function
of G.

We mention that G is pseudoconvex iff log h € PSH(C™).

The following fact, due to T. Barth, is well known: if G = Gy,
is a bounded pseudoconvex balanced domain which is kg-complete,
then its Minkowski function & = h¢ is necessarily continuous. So the
following natural question appeared: is any bounded pseudoconvex
balanced domain G = G with continuous A complete in one of the
three possible interpretations?

The answer found by M. Jarnicki & P. Pflug in 1991 is negative (cf.
8).

THEOREM. For any n > 3 there exists a bounded pseudoconvex

balanced domain G = Gy C C™ with continuous h which is not kg-
complete.

We mention that the main example is in C?; for the general case
take G x E™ 3,

OPEN PROBLEMS: 1) Is there also a counterexample in C2?
2) How to characterize completeness in the class of all bounded pseu-
doconvex balanced domains?
3) What about completeness for bounded pseudoconvex circular do-
mains?

V. Bergman completeness

First let us repeat the necessary definitions. Let G C C" be a
bounded domain. By LZ(G): = O(G) N L?*(G) we denote the Hilbert
space of all holomorphic square-integrable functions on G. Recall that
for a € G the evaluation map

L} G)> f — fla) € C

is a continuous linear functional. Thus there exists K¢(-,a) € L2 (G)
with f(a) = (f, Kc(-,a))r2(e); here (-,-)12(q) denotes the scalar pro-
duct in the space L*(G).

K¢ is called the Bergman function on G; it is antiholomorphic in the
second variable and holomorphic in the first one; moreover Kg(z,w) =
Kg(w, z).
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By Bg: G x C* — [0, o0),

1/2
"\ PlogKa(z,2) o -
. = —_————— s
Be(z; X) E 82,97 X; Xk ,

Jik=1

we denote the Bergman metric on G. The associated distance, the
Bergman distance, is denoted by bg. Recall that co < bg.

Observe that the family (bg)g € Gp, Gy the set of all bounded domains
in all C™’s, is not holomorphically contractible. Nevertheless, it is
invariant under biholomorphic mappings.

We start summarizing some of the known results on b-completeness.
1) Since b is inner there is only one notion of “Bergman complete”.
2) If H*(G) is dense in L?(G) and if lim Ka(z,2) = oo, then G is
Z—
bg-complete.

3) If G is a bounded pseudoconvex domain satisfying an “outer cone
condition” at zp € G, then ll}m Kg(z,z) = oo (cf. [19)).
Z2—rZp

4) Any bounded pseudoconvex domain with C'-boundary is ba-complete
(cf. [17]).
5) For a bounded hyperconvex domain we have that lirgGK alz,2) =
z—¥

oo (cf. [18]).

6) There are bounded pseudoconvex domains, not hyperconvex, such
that the Bergman kernel K¢(z,z) tends to co when z — 8G; for
example, take the Hartogs triangle G: = {(z,w) € C?: |2| < |w| <
1}. Observe that G is not bg-complete. Other examples are the so
called Zaleman domains in C (cf. [18]).

7) Any bounded pseudoconvex balanced domain G = G, with contin-
uous Minkowski function & is bg-complete (cf. [9]).

Recently, it was shown that this result remains true even without as-

suming that h is continuous (cf. [14]). In fact, for any bounded balanced

pseudoconvex domain G the Bergman kernel Kg(z, z) tends to infinite
if z — OG. Moreover, this result gives new examples of bounded
pseudoconvex domains, not hyperconvex, but Bergman complete.

Recall that any bounded pseudoconvex balanced domain is an L2-

domain of holomorphy (cf. [10]).
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Observe that the domains in 4) and 7) (when h is continuous) are
hyperconvex. So there was the question whether any hyperconvex
bounded domain G is bg-complete?

The answer due to Z. Blocki & P. Pflug and to G. Herbort (cf. [2),
[7]) is the following:

THEOREM. Any bounded hyperconvex domain G ¢ C™ is Bergman
complete.

Sketch of the proof. Assuming that G is not Bergman complete leads
to the existence of a boundary sequence (a,), C G and a sequence of
real numbers (0,), such that

KG(') a‘V)

\V/ KG(Q’V7 a'v) Y

is a Cauchy-sequence in L% (G). Thus there is a function f € L2(G),
lfllL2(q) = 1, such that

(exp1©,

Keo(,a,) 3@
—— e

vVEa(ay,a) b

In particular, we obtain that

expiO,

i 1F(@0)
YR KG(C"V: av)

On the other side using §-methods B.-Y. Chen (cf. [4]) and G. Herbort

(cf. [7]) have shown that there are functions f, € L2(G), ﬁ,(al,) =0,
such that

=1.

If = Follzee) < Conllflizace.,)s

where G, ={z € G: gglar,2) < -1}.
Therefore substituting above f by f — f, -+ f. gives the following
inequality

|f(au)|

_m <|If ‘ﬁz”L?(G) < Conl fllrzce.,)-
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What remains is to see that vol(G,,) — 0. But this follows from the

—r D
fact that

/ (~g6(ay, 2))"dA(z) — O,
G

=00

which is a consequence of properties of the Monge-Ampére operator.
O

REMARK. According to [3], for a bounded hyperconvex domain G
the following is true: if (a,),eny C G is a boundary sequence in G, then
there exists a pluripolar set E C G such that Hm,_,00g(ay,z) = 0,
z € G\ E. Using a result of Hérmander it follows that vol(G,, ) —
0. We mention that there are pseudoconvex Reinhardt domains, not
hyperconvex, but nevertheless satisfying the above property.

Recall that any bounded balanced domain is Bergman complete but
not necessarily hyperconvex. Other such examples are the following
so-called Zalcman domains discussed by T. Ohsawa (cf. [18] and [4]).
We put

Dy: = E\UR,B(ak, ),

where ag: = (1/2)* and rp: = (1/2)*V®) with N = (N(&))x C
{2,3,4,...}.
Applying the Wiener criterion we obtain that

oD
Dy is hyperconvex iff » 1/(N(k)) = oo.
k=1

For example, Dy is not hyperconvex if N(k): = k? + 1. On the other
side if kN (k)/(22*) tends to zero, then z_l)ig% Kpy(z,2) = oo (cf. [4]
and [18]). ;

We could conclude that Dy is Bergman complete if we knew that
H>(Dy) is dense in L?(Dy). But this information follows from a
result due to P. Lindberg (1977) (cf. [16]).

In order to be able to formulate that result we need the following
notion of a capacity: Let K C 2 C C be an arbitrary compact subset
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of the open set £2: =2E. We put

Co(K,Q): =inf{|[f[3: f € L*(Q),f 20,

/ F(¢) —22-d¢ > 1forall z € K}.
o l¢—2|

In the case that F' C  is arbitrary we set
Co(F,Q): =sup{C2(K,Q): K C F,K compact}.

Now we give a special case of the theorem of P. Lindberg.

THEOREM. Let G be a bounded domain in C. Assume that there
exists a set F' C OG with Co(F) = 0 such that for any z € 0G \ F' the
following inequality holds:

Iim y(B(z,7) \ G)/r > 0,

=00

where v denotes the analytic capacity.
Then H*®(G) is dense in L2 (G).

Observe that in the case of Zalcman domains F' = {0}, i.e., Co(F) =
0. Thus there are a lot of Zalcman domains, not hyperconvex, but
Bergman complete.

REMARKS. a) In fact, instead of using the above result of P. Lind-
berg, it suffices to apply the following weaker one: let f € LZ(G),
G C C a bounded domain, and let F C 8G with Co(F) = 0. Then, if
¢ > 0, there exists an open set W O F and a function g € L2 (GU W)
such that ||f — g|lL2(¢) < &. Taking a boundary point a € OG as the
set F' this result says that the LZ(G)-functions, that are bounded near
a, are dense in L2 (G).

Recently, also Chen (cf. [5]) using complete Kaehler metrics showed
(compare Lindberg’s result quoted in a)) that for any bounded domain
G ¢ C and any point 2° € OG the holomorphic functions that are-
bounded in a neighborhood of z° are dense in L?(G). Therefore any
bounded plane domain G that satisfies Kg(z, 2) T ® is Bergman

complete.
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We mention that this result can also be proven by using the Berndts-
son solution of the &-problem (cf. [1]) instead of using complete Kaehler
metrics.

b) In [14] it is shown that there are fat plane domains G of Zalcman
type (fat means that int G = G) with:

(i) Kg(z,z) does not tend to oo if z — IG;

(i) G is not Bergman complete.
c) Those Zalcman domains, that are Bergman complete, but not hy-
perconvex, do allow a boundary sequence (a;);enx and € > 0 such that
vol(Ga,) > €, j €N, i.e., the potential theory condition on the volumes
of the sublevel sets of the Green function is strictly stronger than the
Bergman completeness.

OPEN PROBLEM: Characterize those sequences N for which Dy
is Bergman complete.

To conclude this survey we return to the discussion of bounded
pseudoconvex Reinhardt domains. _
Let G be a bounded pseudoconvex Reinhardt domain. As usual, we
denote by log G its logarithmic image. Recall it is always a convex
domain. Without loss of generality, we will always assume that the
point (1,...,1) € G, ie., 0 € log D. We put

S5(G): ={veR": Ryov Clog D}.
5(G) is a closed convex cone in [—o0,0]". Moreover, we set
5(G): ={ve 8(G): exp([—o0,0lv) C G} and '(G): = S(GN\S(G).
EXAMPLE. Using the notions of the second example in section III

we observe that S'(G2) = Ruo(—1,—2), i.e., §'(G2) contains the non
trivial rational vector v: = (—1,—2). Choose the matrix

(1 1Y\, a1 (3 =1\ _ (B!
A.—<2 3),putB.—A —(_2 1)_<B2)'
Then

1 2 -1 -
Pp: Ci — (Czu (2’1,22) — (ZB 5ZB ) = (z%z2 1,21 222)’
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gives a biholomorphic mapping with
ég! = ‘I’B(Gz) = {(21722) = Cz 1/2 < Izzl < 2, l21Z2| < 2}

It is easily seen that G, is not Bergman complete; hence Go is not
Bergman complete.

On the other side we see that S'(G 5) = Rxo(—1, —V2), ie., S'(G 3)
does not contain any non trivial rational vector. Recall that G 5 is
not hyperconvex.

It turns out that there is a complete characterization of Bergman
complete bounded pseudoconvex Reinhardt domains in terms of the
set S§'(@) due to W. Zwonek (cf. [23] and [24]).

TuEOREM. Let G be a bounded pseudoconvex Reinhardt domain
in C™. Then:
G is Bergman complete iff S'(G) N Q" = &.

EXAMPLE. In particular, this theorem implies that
a) Gz is Bergman complete, but not hyperconvex;
b) the example of G. Herbort (cf. [7])

G: = {(z,w) € C?: |w|? < exp(—1/|z*),|2| < 1}

is Bergman complete, but not hyperconvex; one simply has to observe
that S(G) = {0}.
We mention that for bounded pseudoconvex Reinhardt domains in
C? the following properties are equivalent (cf. [23]):
(i) G is Bergman complete;
(ii) for any € > 0: vol({ga < —¢}) — 0 if z — OG;
(iii) for any w € G N (C.)? we have gg(z,w) — 0if z — 8G.
Hence, for this class of domains Bergman completeness can be char-
acterized via pluripotential properties.

Recall that any bounded balanced pseudoconvex is Bergman com-
plete. Thus it remains to solve the following question.

OPEN PROBLEM: Characterize all bounded circular pseudoconvex
domains that are Bergman complete.
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Observe that a solution of this problem would contain the given one

for Reinhardt domains.
By analogy to the Reinhardt case one may ask:

OPEN PROBLEM: (posed by H. Upmeier) Is there a characteriza-

tion of Bergman complete matrix Reinhardt domains?
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