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EQUIVALENCE PROBLEM AND
COMPLETE SYSTEM OF FINITE ORDER

Crone-Kyu HaN

ABSTRACT. We explain the notion of complete system and how it
naturally arises from the equivalence problem of G-structures. Then
we construct a complete system of 3rd order for the infinitesimal CR.
automorphisms of CR manifolds of nondegenerate Levi form.

0. Introduction

Let M and M’ be real analytic (C*) real hypersurfaces in C**! and
CN+t respectively, where N > n > 1. A pseudoconformal mapping
of M into M’ is a holomorphic mapping of a neighborhood of M that
maps M into M’. Then the restriction of f is a C¥ CR embedding
of M into M’. Recently many authors, [14], [22], [23], [33], [34], [35],
[41] and others, studied the dependence of f on its finite jet at a point.
There have been two approaches: one is using the fact that f maps
the Segre varieties of M into the Segre varieties of M’ and the other
is prolongation of the tangential Cauchy-Riemann equations and con-
struction of complete system of finite order of which every CR map f
is a solution. In this paper we briefly review the equivalence problem
of E. Cartan and define the notion of complete system as a generaliza-
tion of Cartan’s complete system of invariants. Then we construct a
complete system of order 3 for the infinitesimal CR automorphisms of
CR manifolds of nondegenerate Levi form.

Given a system of partial differential equations prolongation is a
process of repeated differentiation and algebraic operations to get a
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new system of desired form. Prolongation seems to be a very effective
and widely applicable method in the qualitative study of partial dif-
ferential equations, especially for overdetermined systems. The crux of
the method of prolongation is in the reduction of order by eliminating
the highest order terms using the symmetry of the system. In most
cases, however, one can hardly find the symmetry that can be used for
this reduction of order. For the embedding equations the geometric
invariants are often useful in finding the right symmetry that reduces
the order by eliminating the highest order terms in the prolonged sys-
tem. This is the key observation in [7] and [19]. Generically, in a finite
number of steps an overdetermined system can be prolonged to a level
on which all the partial derivatives of unknown functions of certain
order, say m, can be solved in terms of derivatives of lower order. This
level of prolongation shall be called a complete prolongation and the
resulting system a complete system of order m, which we shall discuss
in detail in §2.

In geometric equivalence problems where the mappings are deter-
mined by a finite number of constants it seems to the author that the
defining property of the mappings can be expressed as a complete sys-
tem of finite order. For instance, a biholomorphism ¢ of the unit disk
D is of the form

qb(Z):e' 1:(17’ 90€R7 OlED

and therefore ¢ is determined by three real constants 8y, Rear and Ima.
On the other hand ¢ is an isometry of the Poincare metric of the
disk. Therefore, ¢ satisfies a complete system of order 2 and thus ¢ is
determined by its 1-jet at a point, that is, by three real constants, see
Example 2.3. Similarly, it follows from the Chern-Moser theory [CM]
that a CR equivalence between C* CR, manifolds of nondegenerate Levi
form is determined by its 2-jet at a point. In §3 we shall construct a
complete system for infinitesimal CR automorphisms.

In CR geometry our primary concern associated with the complete
system is the existence of integral manifolds. This is the equivalence
problem when M and M’ are of the same dimension and the em-
beddability question in different dimensional cases. Secondarily, the
existence of complete system for CR mappings between C“ real hyper-
surfaces implies the holomorphic extendability of CR mappings (see
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[22], [23]). The existence of complete system for the infinitesimal CR,
automorphisms implies that the space of infinitesimal automorphisms
forms a finite dimensional Lie algebra (see Theorem 3.1). In the cases
N > n the existence of complete system for infinitesimal deformations
implies the finite dimensionality of the deformations or the infinitesi-
mal rigidity of an embedding. In §4 we shall discuss further problems
along these lines.

The author thanks D. Zaitsev for his interest and for many valuable
discussions and suggestions. As he pointed out the complete differential
system of order 3 for the infinitesimal automorphisms can be obtained
by differentiating with respect to the 1-parameter in the 1-parameter
family of CR automorphisms. However, the proof of Theorem 3.1 is
more direct and simpler. As a rule we study infinitesimal change first
to understand nonlinear objects.

1. Equivalence problem of G-structures

Let M be a C* manifold of dimension n and G be a linear subgroup
of GL(n;R). A G-structure on M is reduction of coframe bundle of M
to a subbundle with the structure group G. For instance, a Riemannian
structure on M is a SO(n)-structure and the subbundle in this case is
the orthonormal coframe bundle of M.

Now let M and M be manifolds of dimension n with G-structure.
The equivalence problem is deciding whether there exists a structure
preserving mapping f : M — M. Locally, this is a question of exis-
tence of solutions for an overdetermined system of first order partial
differential equations in cases where G is a sufficiently small group.

E.Cartan’s method to this problem is as follows: We fix coframes
6 = (6, ,0™) of M and § = (§, 0™ of M adapted to the G-
structure, where 6 and 0 are defined over an open set U of M and
an open set U of M , respectively. Then the question is whether there
exists a mapping f : M — M that satisfies

(1.1) F70% = ag 6°,

where a := [az,t (@)]nxn is a G-valued function of M. In terms of local
coordinates, (1.1) is a system of first order partial differential equations
for f = (f1,---, f*) and system of algebraic equations for ag(x). Thus
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we consider the product U x G and the tautological 1-form @, which
is a vector valued 1-form defined by @ = gf on U x (G, namely

(1.2) @(3«"79) = gf,, Vx € U, Vge@G,

where 0, is a column vector (61,---,0%). G acts on U x G on the left
by the action defined by

h(z,g) = (z,hg), Yz €U, Vg,h €G.

PROPOSITION 1.1. A diffeomorphism f : U — U satisfies (1.1) if
and only if there exists a diffeomorphism F' : U x G — U X G satisfying

i) F*6 =0
ii) the following diagram commutes:

UXG——F—rﬁxG

U S . U
iii) F(z,gh) = gF(z,h), foreachz €U, andg,h€G.

Proof. Suppose that f satisfies i*é = ggf, where go is a G-valued
function on M. Define F' : UxG — UxG by F(z, g) = (f(z), 995 - (%)).
Then F satisfies ii) and iii). Moreover,

F*@ = F*(30) = (990~ )18 = (gg0~")g08 = g6 = ©.

Conversely, suppose that F : U x G — U x G satisfies i) - iii). Define
f:U—Uandgy:U — Gby F(z,e) = (f(:z:),go(:z:)_l), where e is the
identity of G. Then F(z,g) = gF(z,e) = (f(z),995 "), and i) implies
that ~ ~

g6 = F*(38) = (990~ ") f"0

therefore, f*0 = gof. O
Now apply d to (1.2). We get

dO = dg A 6 + gdb;
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substituting # = g~ 1O, we obtain
(1.3) dO = dgg™* A O + gdb.

We need the following

HYPOTHESIS: There exists unique 1-forms vk, 4,j = 1,--- ,n,
such that
(1.4) df* = —wi A 67
and ‘

[Wi(z)] € G, for each z € U,

where G is the Lie algebra of G.

This Lie algebra valued 1-form w = [w!] is called a torsion-free
connection (see [9]). Substitute df = —w A6 and 8 = =16 in (1.3), to
get

d@ =dgg ' ANO —guwAgTiO = (dgg™" — gwg™") A 6.

Let

(1.5) _ Q= —(dgg™" — gwg™1),
then  is a G-valued 1-form on U x G and we have
(1.6) de = -0 A6,

Now it is easy to show

PROPOSITION 1.2. Let @ and Q;'-, 1,3 =1,--- ,n, be the 1-forms
defined by (1.2) and (1.5) on U x G. Then @?, Q% spans the cotangent
space at each point of U x G. Furthermore, if 6°, Q2 are the corre-
sponding 1-forms on U x G and

F:UxG-UxaG
is the mapping as in Proposition 1.1, then
(1.7) FQi = Qi
The set {6, 2} is called a complete set of invariants for the equiv-
alence problem. ( is called a torsion-free connection form on U x G.

Note that w is a 1-form on the base manifold U and that the restriction
of 2 on each fibre is the Maurer-Cartan form of G.
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2. Complete systems

Let f be a smooth (C°°) mapping of an open subset X of R™ into
an open subset U of R™. In this section we use superscripts for each
components of vectors , thus z = (z*,--- ,2") and u = (u',--- ,u™)
are the standard coordinates of R” and R™, respectively, and f(z) =
(@) ™ (@)).

Let Uy, be the space of all the different k-th order partial derivatives
of the component of f at a point z. Set UW =U xUy x---x Uy, be the
Cartesian product space whose coordinates represent all the derivatives
of a mapping u = f(z) of all orders from 0 to g. A point in U(® will
be denoted by u(®).

The space J9(X,U) = X x U9 is called the g-th order jet space
of the space X x U. If f: X — U is smooth, let (j9f)(z) = (=, f(z),
0% f(z) : |a| < g), then j2f is a smooth section of J¢(X,U) called the
g-graph of f.

Consider a system of partial differential equations of order ¢ (g > 1)

for unknown functions u = (u', -+ ,u™) of independent variables x =
(wls T 71'”),
(2.1) Ax(z,u@) =0, A=1--.1,

where Ay (z, u(q)) are smooth functions in their arguments. Then
A = (Ay,---,4)) is a smooth map from X x U into R, so that
the given system of partial differential equations describes the subset
Sa of zeros of Ay in X x U9, called the solution subvariety of (2.1).
Thus, a smooth solution of (2.1) is a smooth map f : X — U whose
g-graph is contained in Sa.

A differential function P(z,u(?) of order ¢ defined on X x U@ is
a smooth function of z, u, and derivatives of u up to order g. The
total derivatives of P(z,u(9) with respect to z* is the unique smooth
function defined by

m

opP oP
D;P (a+1)y .= G i
(@ u™) = g5 + 22 Wiigga
a=1l J
where J = (j1,++ ,jn) i a multi-index such that |J| < ¢ and

Jii = (j1, - ,Ji+1,---, jn)- For each nonnegative integer r, the rth-
prolongation A of the system (2.1) is the system consisting of all
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the total derivatives of (2.1) of order up to r. Let (A(") be the ideal
generated by A of the ring of differential functions on X x U(@+7),
If A € (A™M) for some 7, the equation

(2.2) Az, w4ty =0

is called a prolongation of (2.1). Note that any smooth solution of (2.1)
must satisfy (2.2). If k£ is the order of the highest derivative involved
in A, we call (2.2) a prolongation of order %.

We now define the complete system.

DEFINITION 2.1. We say that (2.1) admits a complete prolongation
to a system of order k if there exist prologations of (2.1) of order k

(2.3) Au(x,u(k)):O, v=1,---,N

which can be solved for all the k-th order partial derivatives as smooth
functions of lower order derivatives of u, namely, for eacha =1,--- ,m
and for each multi-index J with |J| = k,

(2.4) ul = H(z,u® : p < k)
for some function H$ which is smooth in its arguments.

Every ordinary differential equation of order n

y™ = F(e,y,y,v",... .y Y)

is obviously a complete system of order n. Then the existence and
uniquensess of solutions for given initial condition follow from the fun-
damental theorem of ordinary differential equation. Moreover, if F is
analytic in its arguments then the solutions are analytic. If a given
system of partial differential equations admits prolongation to a com-
plete system the solutions have the same properties, see Proposition
2.5.

ExaMPLE 2.2, Consider the following system for one unknown func-
tion u(z, y) of two independent variables.

(2.5)
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We shall show that (2.5) admits a prolongation to a complete system
of order 2. Differentiate the first equation of (2.5) with respect to z
and y , respectively. then we have
Ugg T UgUy + Ulzy = Qg
(26) Ugy T ui + Ullyy = Gy
Uyy T u? = b.

2.6)isa uasi-linear system of second order. The second order terms
a
are

1 « 0 Ugg
0 1 u Ugy
0 0 1 Uyy

Since the matrix of the coefficients is invertible we can solve for all the
second order derivatives of u in terms of lower order terms to get a
complete system of order 2. Thus a C? solution u of (2.5) is uniquely
determined by u(0), u,(0), and u,(0) and u is C*.

Coming back to the equivalence problem let G be a Lie-subgroup of
GL(n;R). Suppose that a manifold E of dimension n has a G-structure
and 7 : Y — E is the associated principal bundle. The equivalence
problem is finding canonically a system of differential 1-forms

(2.7) wh o WY, where N =n+dimG,

so that a mapping f: E — E preserves the G-structure if and only if
there exists a mapping F;Y — Y, which is a lift of f that is, 7o F' =
f om, and such that

(2.8) F*ot=w' i=1,---N,

where E is a manifold of dimension n with a G-structure and # : ¥ — E
is the associated principal bundle and &° are the corresponding 1-forms
on Y. (2.7) is called a complete system of invariants of the G-structure
and (2.8) is a complete system of order 1 for F' in the sense of Definition
2.1. It turns out that (2.8) is equivalent to a complete system of order
2 for f . In the following we present a direct construction of a complete
gystem for Riemannian isometries.
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EXAMPLE 2.3. Let (M, g) and (M, §) be smooth Riemannian man-
ifolds with Riemannian metric g and g, respectively. A C! map u :
M — M is an isometry if

(2.9) u'g = g.

In term of local coordinates (2.9) can be written as

(2.10) uf‘u? Jap(w) = 9:5(z), (summation convention),
for each 7,5 = 1,... ,n. By applying 0% to (2.10) we have

N _ o) .
(211) (] +ufuf)Gas(u) + ufef 5 (W] = 5k (),

for each 4,7,k = 1,... ,n. We may assume that u(0) = 0,g;;(0) =

815, Gap(0) = dup, and uZ(0) = 6%. Then at the reference point 0 (2.11)
is

(2.12) uby, + ul), = —Gij (0) + 9i5,4(0).

By permuting the indices {4, 7, k} in (2.12) we get

(2.13) ul; + ub; = —Gix,:(0) + gjn,:(0)
and
(2.14) w4 uhy = ~Gki; (0) + gri,5(0).

Then (2.12) + (2.14) — (2.13) yields
2u§-k = —3i;,k (0) + 3£,:(0) = Gri.;(0) + 9i5,k(0) — 5x,5(0) + gri,5(0)-

Therefore, on a neighborhood of (0, u(0), u;(0)) in the space of first jets
of u we have

(215) u;k = ;k(mvu(l))ﬂ

which is a complete system of order 2.
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Now we observe that solving the given system of partial differen-
tial equations (2.1) is equivalent to finding an integral manifold of the
corresponding exterior differential system

T
du§ — E uf ;dzt =0
i=1

for all multi-index I with [I| < ¢ and a = 1,--- ,m, with an indepen-
dence condition dzy A --+ A dz, # 0 on Sa (see [2]). If a solution of
(2.1) satisfies a complete system of order £ then we have the following
Pfaffian system on J*1(X,U):

4 ke
du® — Zujv‘d:cj =0,

j=1

(2.16) n _
duf — Y ufdal =0, |I|=k-2,
, —

duf — > Hfda* =0, |I|=k-1

\, =1

with an independence condition dz' A --- A dz™ # 0, where Hf, are

as in (2.4). Thus a solution u = f(z) of (2.1) of class C* satisfles a
complete system of order k if and only if

(z) = (z, f(z), 01 f(z) : [T <k —1)

is an integral manifold of the Pfaffian system (2.16). In particular, we
have

PROPOSITION 2.5. Let f be a solution of (2.1) of class C*. Suppose
that f satisfies a complete system (2.4), then f is C*. If each HY is
real analytic then [ is real analytic. Furthermore, a solution is uniquely
determined by its (k — 1)-jet at a point.
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3. Complete system for the infinitesimal CR automor-
phisms

In this section we construct a complete system for the infinitesimal
CR automorphisms of a CR manifolds of nondegenerate Levi forms.
Let M be a differentiable manifold of dimension 2n+1. A CR structure
of hypersurface type on M is a subbundle V of the complexified tangent
bundle Te M having the following properties:

i) each fiber is of complex dimension n,

i) yvny = {0},

iji) [V, V] C V (integrability).

Given a CR structure V the Levi form £ is defined by

E(Ll,Lz) = \/—_1[L1,E2], mod (V-l-.p)

L is a hermitian form on V with values in TcM/(V + V). M is said
to be strictly pseudoconvex if £ is definite. A real hypersurface in a
complex manifold has natural CR structure induced from the complex
structure of the ambient space. A complex valued function f is called
a CR function if f is annihilated by V. Let {L,--- s Ln} be a set of
complex vector fields that generates V. Then f is a CR function if and
only if

(3.1)

Lif =0, i=1,---,n (tangential Cauchy-Riemann equations).
A system of CR functions (f1,---, fry1) with dfs A+  Adfnyr #0is
a CR immersion into C**1,

Let (N,V’) be a CR manifold of dimension 2N + 1, N > n, with
the CR structure bundle V'. A mapping F : M — M’ is called a CR
mapping if F' preserves the CR structure, that is,

A real vector field X on a CR manifold (M, V) is an infinitesimal CR au-
tomorphism if the flow maps ¢; of X are the local CR diffeomorphisms
for each t with || < e. A smooth vector field X is an infinitesimal CR
automorphism if and only if the Lie derivative of a section L of V with
respect to X is again a section of V, that is, [X, L] € V. We set

(3.3) [X,L;] = o!L;, (summation convention),

for some functions o for each i = 1,... ,n. We have
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THEOREM 3.1. Let M?"+! be a C¥ CR manifold of nondegenerate
Levi form. Then the defining equation (3.3) of the infinitesimal CR
automorphisms admits prolongation to a complete system of order 3.
Therefore, a C* infinitesimal CR automorphism is in fact C¥. More-
over, the set of infinitesimal CR automorphisms of M forms a finite
dimensional Lie algebra.

Proof. In this proof we use summation convention: repeated indices
mean the summation over 1 through n. (3.3) is linear in X. Suppose
that X7 and X5 are solutions of (3.3). Then

(3-4) [X1, Xa], L] = —[[X2, L], X1] — [[L, Xu], X3,

by Jacobi identity. Each X, j = 1,2, is an infinitesimal CR auto-
morphism and hence Z; := [X;, L] is a section of V. Then the right
hand side of (3.4) is —[Za, X1]+ [Z1, X2|, which is again a section of V.
This shows that infinitesimal CR. automorphisms are closed under the
bracket operation and hence form a Lie algebra. To prove the other
assertions of the theorem it suffices to show that (3.3) admits a prolon-
gation to a complete system of order 3. Choose a C“ nonvanishing real
vector field T of M which is transversal to the CR structure bundle V
and set

(3.5) (Li, L] = V=1pzT, mod (V+V).

The hermitian matrix (p;7)i j=1,... » is the Levi form. We may assume
that at the reference point (p;;) is a diagonal matrix with diagonal
elements +1, for otherwise we make a suitable linear change of basis
Ly,...,Ly. Set

(3.6) X = f Ly + fAL, +¢gT, gisreal
(37) [L.L',I_/j] = \/—-lpijT—i—a%L)\ -+ bi:,’.i)\
(3.8) [Ls, L] = ¢y L

and

(3.9) [T, L;) = A} Ly + B} Ly + E;T.
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By substituting (3.6) for X in (3.3) and by equating the corresponding
componets we have

(3.10) a} = —Lif* + frc; — fPal, + gA},

and ~ _
~Lif* ~ b, + 9B} =0

or equivalently

(3-11) Lif* = —f*by, + ¢B}
and
(3.12) Lig = —f*piu + gE;.

On the other hand by Jacobi identity

[X7 [Lh E.Y]] = _'[L’iv ['Z/J’XH - [I_‘jv [Xv L'b]]
(3.13) =[L;, —a;Ly]—~[L;, oLy

= (c‘x;\pi,\ +ajpr)T + L and L components

In the left hand side of (3.13) substitute (3.6) for X and (3.7) for
[L;, L;]. By equating the T-components and by (3.12) we obtain

(3.14) a}pix +oloay = —vV—1pyTg + (1, f, f,q),

where ( ) denotes an element of the module over the ring of analytic
functions of M generated by the arguments inside ( ), that is, a lin-
ear combination of the arguments with analytic coefficients. In (3.14)
substitute (3.10) for ;' then we have

(3.15) pisTg = (Lif ) pxj + (L f)oir + (1, f, F, 9)-

Since the matrix of coefficients (px;)a,j=1,... ,» is invertible we can solve
(3.15) for L;f* to obtain

(3.16) Lif*=(1,f,9,f,Lf, Tg).
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Now we shall express all the 3rd order partial derivatives L*LAT* f and
LeLPTtg as analytic functions of lower order derivatives, where a =
(a1,-..,an)and 8= (B1,...,Bn) are multi-indices and |a|+|8]|+t =

If |8| # 0 then by (3.11) L*LPT"*f reduces to the second order. If
[ce|-+B] # 0 then by (3.12) and its complex conjugate L*LATg reduces
to the second order. Thus it suffices to express LoT" f with |a|+|3] = 3
and T3¢ in terms of derivatives of f and g of order < 2. By applying
L; to (3.16) we obtain

LjLif = <17 f: gHLjfv ng7LjI_/.]F7 I_’-Z’.fv LJT9>

In the right hand side L;L;f = ([Lj, Li] + L;L;) = (Lf, f)
I

and (3.11), Lig = {g, ) by (3.12) and Lf = (1, /.9, 7.
(3.16) and

) by (3.7)
Tg) by
LiTg= (~[T,L;] +TLj)g
= (g,Tg,JF,Tﬁ

by (3.12). Hence we have

(3.17) LiLif = (1, f,9,Tg, f,Lf, Tf).

Apply Li to (3.17). Then in the same way as above we have
(318)  LpL;Lif =(1,f,9.Tg,f.LF,TF), Vi, 5k=1,...,n
Apply L; to (3.18). Then we have

EZLijL.;f‘ = LijLif/lf - {p}czTLjLi + piTLyL; + pq;[TLij}f
+{f,Lf,Tf L*f,TLf,),

where the last two terms occur when L; commutes with L's. In the first
term of the RHS L,;f = (f,g) by (3.11) hence by (3.18) and (3.12) the
first term of the RHS is (1, f,9,Tg, f, Lf, Tf). Since (px1) is diagonal
and invertible at the reference point we can solve for TL;L; for each

i,j=1,...,n. Thus we have

(3.19) TL;Lif ={1,f,9.Lf,Tf,Tg,TLf)+ (f,Lf,Tf,L*f, TLf).
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Apply L to (3.19). Then

T2L’if :<17f7g7Lf7Tf7TgyszvTLf7T2f>
(3.20) il
+ (f,Lf,Tf,L°f,TLf,L°f, TL*f).

In the right hand side of (3.20) substitute for L®f and for TL?f the
complex conjugate of (3.18) and (3.19), respectively, then we have
(3.21)

T°Lif = (L, f,9,Lf,Tf,Tg,L*f, TLf, T*f) + (f,Lf,Tf,L*F,TLf).
Apply L; to (3.21). Then we have
(322) T°f=(1,f,9,Lf TS L*f,TLf, T*f) +{f,Lf,L*f,TLf).
Finally, by applying T? to (3.15) we have

T3g = (terms of order < 2) + (T?Lf, T2Lf).

In the right hand side we substitute (3.21) for T2Lf and the complex
conjugate of (3.21) for T?Lf, to obtain

TS =(1, f,g, Lf, T, Tg, I*f, TL, T*f)
(3.23) +(f,Lf, T, L?f, TLf,T*f).

Thus we obtained a complete system of order 3 for (f, f,9). O

4. Complete system, rigidity of embeddings and regularity
of rigid embeddings

Hayashimoto ([24]) constructed complete systems of finite order for
the cases of CR manifolds of degenerate Levi forms of finite type. He
used the method of prolongation and made essential use of the fact
that the CR functions f = (f1,-.., fnv1) are related by ro f = 0,
where r is a C* defining function of the target manifold. In pseudo-
hermitian embedding (see [39] for definition) , however, there is no
such relation among fi, ... , fn+1. Instead, the mappings’ being psudo-
hermitian gives relation among derivatives of f and Kim [33] obtained
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a complete system for this case also under a very complicated but
generic assumption. In general, if a family of mappings of a manifold
M into M’ satisfy a complete system (2.4) of order k then a mapping
of the family is determined by its (k — 1)-jet at a point. Conversely,
if a mapping of a certain family is determined by its finite jet at a
point our question is whether the system of differential equations that
defines the family admits prolongation to a complete system. The
first result in this direction is [34], where Kim proved using the Segre
variety the finiteness of CR immersions of a C* CR manifold M into
another C* CR manifold M’ with degenerate Levi forms of finite type
and then constructed a complete system for the CR immersions of
M into M’. Tt seems that if the Segre variety argument shows the
finite determination of CR mappings then this finiteness actually comes
from a complete systemn. Our further question is whether a rigid local
embedding necessarily satisfies a complete system, namely

PROBLEM 4.1. Let M be a C¥ CR manifold of hypersurface type
of dimension 2n + 1, n > 1. A CR immersion f of M into a sphere
§2N+1 N > n, is said to be rigid if for any CR immersion g of M into
the sphere there exists a CR automorphism ¢ of the sphere such that
g=¢of. If M admits a rigid immersion into the sphere does there
exist a complete system of finite order for the CR immersions?

PROBLEM 4.2. Let (M, g) be a Riemannian manifold of dimension

n. A smooth map u = (ul,... ,u"): M — RV is an isometric immer-
sion if

(4.1) (du,du) = g.

In terms of local coordinates z = (z1,... ,2y) (4.1) is

& &

N U u

for each i,j = 1,... ,n , where g;;(z) = (%,%). A solution f =
(f*,..., fN) of (4.1) is said to be rigid if for any solution g of (4.1)
there exists an isometry ¢ of RN such that f = ¢og. If M admits

a rigid isometric immersion then does (4.1) admit a prolongation to a



Equivalence problem and complete system 241

complete system of finite order? If M is C* then is a rigid isometric
immersion f necessarily C¥7

There is a conformal version of the above questions where the em-

bedding equation is

(4.2) (du, du) = Ag,

for some positive valued function A and the other analogies are obvious.
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