계치부분군과 G-열의 일반화

  • 우무하 (고려대학교 사범대학 수학교육과) ;
  • 이기영 (대전산업대학교 정보통신 컴퓨터 공학부)
  • Published : 2000.04.01

Abstract

이 논문에서 계치부분군의 일반화와 이들을 이용한 G-열의 도입과정을 다룬다. 계치부분군과 일반화된 계치부분군 그리고 호모토피군의 차이를 설명하여 몇가지 공간의 계치부분군을 계산한다. 그리고 G-열이 완전열이 되기 위한 조건들을 조사하고 이 완전성을 이용하여 계치부분군의 계산과 함수의 단사성과 그 함수의 G-열의 완전성과의 상호 관련성을 보인다. 마지막으로 G-열의 일반화와 쌍대 G-열의 다룬다.

Keywords

References

  1. Publ. Mat. UAB v.25 On the space of free loops of an odd sphere J. Aguade
  2. The Lefschez fixed point theorem R. F. Brawn
  3. Amer. Math. Monthly v.53 Quaternians and reflections H. S. M. Coxeter
  4. Topology v.6 On monomorphisms in homotopy theory T. Ganea
  5. Amer. J. Math v.87 A certain subgroup of the fundamental group D. H. Gottlieb
  6. Amer. J. Math v.91 Evaluation sbugroups of homotopy groups D. H. Gottlieb
  7. Illinois J. Math v.13 Covering transformations and universal fibrations D. H. Gottlieb
  8. Ann. Math v.87 On fibre spaces and the evaluation map D. H. Gottlieb
  9. Trans. Amer. Math. Soc v.170 Applications of bundle map theory D. H. Gottlieb
  10. Gordon and Breach Homotopy theory and duality P. J. Hilton
  11. Chinese Math v.5 Estimation of the Nielsen numbers B. J. Jiang
  12. Contemporary mathematics, American Math. Soc v.14 Lectures on Nielsen fixed point theory B. J. Jiang
  13. J. Korean Math. Soc v.21 Certain subgroups of homotopy groups R. Kim;M. H. Woo
  14. Pacific J. Math v.42 Evaluation subgroups of factor spaces G. E. Lang, Jr
  15. J. Korean Math. Soc v.25 The relative evaluation subgroups of a CW-pair K. Y. Lee;M. H. Woo
  16. J. Korean Math. Soc v.25 Homology and generalized evaluation subgroups of homotogy groups K. Y. Lee;M. H. Woo
  17. J. Korean Math. Soc v.27 Exact G-sequences and relative G-pairs K. Y. Lee;M. H. Woo
  18. Top. Appl v.52 The G-sequence and ω-homology of a CW-pair K. Y. Lee;M. H. Woo
  19. Proc. Amer. Math. Soc v.124 The generalized evaluation subgroups of product spaces relative to a factor K. Y. Lee;M. H. Woo
  20. J. Math. Kyoto Univ v.32 Cyclic morphisms in the category of pairs and generalized G-sequences K. Y. Lee;M. H. Woo
  21. Appl Cocylic morphisms and dual G-sequences, to appear in Top K. Y. Lee;M. H. Woo
  22. J. Austral. Math. Soc. Ser. A v.32 On cyclic maps K. L. Lim
  23. Canad. J. Math v.42 The homotopy set of the axes of pairings N. Oda
  24. fixed points and rational homotopy Gottlieb groups, group actions J. Oprea
  25. Japonika Math. J v.46 A remark on G-sequences J. Pak;M. H. Woo
  26. J. Korean Math. Soc v.35 tHE G-sequence of a map and its exactness J. Z. Pan;X. Shen;M. H. Woo
  27. to appear in Top. Appl Exactness of G-sequences and monomorphisms J. Z. Pan;M. H. Woo
  28. Pacific J. Math v.31 G-spaces W-spaces H-spaces J. Siegel
  29. J. Indian Math. Soc v.33 Generalized Gottlieb groups K. Varadarajan
  30. Elements of homotopy theory G. W. Whitehead
  31. Banach Center Publ v.49 Evaluation subgroups and G-sequences M. H. Woo
  32. J. austral. Math. Soc(Series A) v.58 T-spaces by the Gottlieb groups and its duality M. H. Woo;Y. S. Yoon
  33. Acta Mathematica Sinica, New Series v.12 Realization of fixed point sets X. Zhao