A Study on the Photocatalytic Degradation of VOC over TiO2 Coated on Glass Bead

산화티탄 광촉매를 이용한 VOC 가스 처리효과에 관한 연구

  • Yun, Seok-Yeong (Dept. of Inorganic Mat. Eng., Pusan National University) ;
  • No, Jun-Hyeong (Dept. of Inorganic Mat. Eng., Pusan National University) ;
  • Park, Sun-Je (Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Seung-Ho (Korea Institute of Ceramic Engineering and Technology)
  • Published : 2000.05.01

Abstract

The photocatalyst of $TiO_2$coated on glass bead was prepared from sol-gel method to remove the VOC (vola-tile organic compounds) by the photocatalytic reaction. The coated films were characterized by X-ray diffraction(XRD), specific surface area(BET), and scanning electron microscopy observation (SEM), The gas-phase photocatalytic degradation of trichloroethylene(TCE) and benzene with coated titanium dioxide on glass beads was in-vestigated using a fixed bed reactor. The degradation was calculated by the concentration difference with the retained on the reactor with aid of gas chromatography. At steady state, conversion yields were obtained for 80% of trichloroeth-vlene in 400 ppmv concentration and 65% on benzene in the range of concentration from 50 to 300 ppmv, respectively.

산화티탄의 광촉매 반응을 이용하여 휘발성 유기화합물(VOC)를 분해제거 하기 위하여 산화티탄을 glass bead에 sol-gel법으로 코팅하였다. 코팅막의 물성은 XRD, BET, SEM을 통해 분헉하였으며, 산화티탄이 galss bead를 채운 실험실규모의 광촉매 반응기를 이용 VOC중 벤젠 및 TCE 가스의 광촉매반응에 의한 분해효율에 대해 연구 컴토하였다. 반응기내의 잔류시간에 따른 가스농도 차이를 gas chromatography로 비교 분석하여 그 분해효율을 계산하였다. 이와 같은 정적인 상태의 실험결과, 400ppmv의 농도의 TCE인 경우 80%의 분해효율을 얻었으며, 50ppmv에서 300ppmv 농도의 벤젠인 경우 65%의 분해효율을 얻었다.

Keywords

References

  1. J.Air Waste Manage.Assoc. v.41 K. Wolf;A. Yazdani;P. Yates
  2. Environ.Sci.Technol. v.21 C.F. Wilkinson
  3. Environ.Sci.Technol. v.25 S.M. Japer;T.J. Wallington;S.J. Rudy;T.Y. Chang
  4. Evaluation of VOC management and control, Industrial Pollution Prevention Control v.48 K.D. Liu
  5. Applied Catalyst B: Environmental v.13 Photodegradation of phenol in water using silica-supported titania catalysts Luis J. Alemany(et al.)
  6. Solar Energy v.32 Ahmed, S.;Ollis, D.F.
  7. Applied Catalyst B : Environmental v.14 R.M. Alberici;W.F. Jardim
  8. J.of KSEE v.20 no.11 이근대;박진환;안병현;홍성수
  9. 色村 村擇 貞夫
  10. 세라미스트 v.2 no.2 이상훈;임형섭
  11. Chem. Letters. I. Sopyan;S. Murasawa;K. Hashimoto;A. Fujishima
  12. J.Phys.Chem.,B v.101 C. Anderson;A.J. Bard
  13. J.Phys.Chem.,B v.101 B. Ohtani;Y. Ogawa;S. Nishimoto
  14. J.Phys.Chem.,B v.101 Y. Xu;C.H. Langford
  15. J.Korean Ind. & Eng. Chemistry. v.7 no.6 김병관;水野哲考;安井至
  16. Introduction to ceramics W.D. Kingery;K.K. Bowen;D.R. Uhlmann
  17. Chem.Rev. v.95 A.L. Linsebigler;G. Lu;J.T. Yates,Jr.
  18. J.Phys.Chem. v.91 R.W. Mattews
  19. J.Photochem & photobial. A-chemistry v.113 N.N. Lichtin;M. Sadehi
  20. Environ.Sci.Technol. v.28 Y. Zhang;J.C. Crittenden;D.W. Hand;D.L. Perram
  21. Applied Catalysis B: Environmental v.17 K. Wang;H. Tsai;Y. Hsieh