Abstract
We determine the Shilov and Choquet boundaries and the set of peak points of Lipschitz algebras $Lip(X,\;{\alpha})$ for $0<{\alpha}{\leq}1$, and $lip(X,\;{\alpha})$ for $0<{\alpha}<1$, on a compact metric space X. Then, when X is a compact subset of $\mathbb{C}^n$, we define some subalgebras of these Lipschitz algebras and characterize their Shilov and Choquet boundaries. Moreover, for compact plane sets X, we determine the Shilove boundary of them. We also determine the set of peak points of these subalgebras on certain compact subsets X of $\mathbb{C}^n$.